簡易檢索 / 詳目顯示

研究生: 楊宛璇
Yang, Wan-Hsuan
論文名稱: 探究PTPA的細胞功能
Investigate the cellular functions of PP2A phosphatase activator (PTPA)
指導教授: 蔣輯武
Chiang, Chi-Wu
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 82
中文關鍵詞: 蛋白質磷酸酶2A型PTPA
外文關鍵詞: PP2A, PTPA
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質磷酸酶2A型 (PP2A) 是真核細胞中一種主要的絲氨酸/蘇氨酸磷酸水解酶,在許多細胞功能調控過程中扮演必要的角色。磷酸酪胺酸磷酸酶活化分子 (PTPA),又稱為PP2A磷酸水解酶活化分子,氨基酸序列分析結果顯示此分子從酵母菌到人類在演化中被高度保留,對活化態PP2A完全酶的產生是很重要的調控者,但是目前對於PTPA調控PP2A的活化確切機制以及PTPA在哺乳類動物細胞中所扮演的生理角色仍然是大部分未知的。在此,我們探討PTPA對調節細胞生長、運動的角色及其可能參與的調控路徑。首先我們運用雙分子螢光互補法 (BiFC) 的方法確認PP2Ac與PTPA所形成的複合體是以細胞核質均勻分佈為主。接著,我們也運用了免疫沉澱法 (co-IP) 驗證了內生性的PP2A/A能夠與構成BiFC的PP2Ac和PTPA形成複合體,推測內生性的PP2A/A、PP2Ac及PTPA可能會以三聚體的型式存在於細胞當中。雖然我們發現在NIH3T3、HeLa及Hep3B細胞中過度表現PTPA對於細胞增殖沒有顯著的變化,相反地,當以核醣核酸干擾法將PTPA表現減低時,會顯著減少細胞增殖速度。同時也發現在NIH3T3及HeLa細胞中將PTPA表現減低時,細胞呈現紡錘狀的數目增多,也伴隨細胞型態狹長的改變,並顯著減少actin stress fiber的形成,及大幅降低細胞的傷痕癒合運動能力。另一方面,當PTPA表現減低時,雖然Hep3B細胞actin stress fiber的形成改變是不明顯的,但對於細胞的傷痕癒合運動能力也是大幅降低的。在HeLa細胞中,我們也發現將PTPA表現減低時,能提高RhoAGTPase的活性,卻降低Rac1GTPase的活性。接著,我們探討PTPA可能是經由哪些相關的訊息傳遞路徑來造成這些細胞現象,在NIH3T3細胞中,過度表現與PP2Ac結合有缺陷的PTPA突變型 (N277K) 而非野生型的PTPA,會減少PP2Ac單元的表現量;減低PTPA表現會減少AKT的絲氨酸473與蘇氨酸308位點的磷酸化程度。此外,我們也探討了在NIH3T3細胞中PTPA對於mTOR下游p70S6K的影響,並發現減低PTPA表現會使p70S6K的蘇氨酸389位點的磷酸化降低。在HeLa細胞中,減低PTPA表現會顯著減少B56調節次單元家族的表現量。在Hep3B細胞中,PTPA過度或是減低表現僅會些微影響PP2A A、B和C次單元的表現量。在HeLa與Hep3B中PTPA表現量降低會提高AKT絲氨酸473與蘇氨酸308兩位點的磷酸化程度,在HeLa細胞中PTPA表現減低會使p70S6K的表現量降低。在Hep3B細胞中PTPA表現量降低會提高mTOR下游受質p70S6K與S6的磷酸化表現,同時也會提高AKT下游的受質GSK3的磷酸化表現量。過度表現野生型的PTPA而非與PP2Ac結合有缺陷的PTPA突變型 (N277K),會提高E-cadherin的表現量,相反地,減低PTPA表現會降低E-cadherin的表現量。總結以上結果,我們發現PTPA對於PP2A/A、PP2Ac、AKT、AKT絲氨酸473與蘇氨酸308位點的磷酸化、p70S6K蘇氨酸389位點的磷酸化有不同的調控角色。在NIH3T3與HeLa細胞中,PTPA表現降低造成細胞生長、stress fiber生成與細胞運動的減少。除此,降低PTPA表現量會提高細胞型態的轉變,增加紡錘狀的細胞型態,降低E-cadherin的表現量程度,可能參與上皮細胞間質轉化 (EMT) 的過程,因此,PTPA在細胞中所扮演的角色可能是具有多效性功能的。

    Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that plays an essential role in many cellular processes in eukaryotic cells. Phosphotyrosyl phosphatase activator (PTPA), also known as PP2A phosphatase activator is highly conserved from yeast to human and is critical for forming active PP2A holoenzymes, but the exact mechanism underlying PTPA-mediated activation of PP2A and whether PTPA plays other roles in cells are largely unknown. Here, we report on the investigation of the role of PTPA in cell proliferation and motility, and the role in regulating the signaling pathways involved in controlling cell growth, proliferation, and motility. Bimolecular fluorescence complementation (BiFC) analysis was applied to investigate the formation and subcellular localization of the complex formed between PP2Ac and PTPA. The results of BiFC analysis showed that the complex of PP2Ac and PTPA displayed a ubiquitous pattern throughout the entire cell. Results of co-immunoprecipitation (co-IP) showed that the endogenous PP2A/A was also found to associate with the BiFC complex of PP2Ac and PTPA, suggesting that PP2A/A, PP2Ac and PTPA may form heterotrimeric complexes in cells. Furthermore, we found that PTPA overexpression showed modest effect on cell proliferation, but PTPA knockdown notably reduced cell proliferation of NIH3T3, HeLa and Hep3B cells. NIH3T3 and HeLa cells with stable PTPA knockdown showed increased numbers of cells with an elongated spindle-shaped morphology and showed markedly reduced amounts of stress fibers. In agreement with the reduced amounts of stress fibers, PTPA knockdown significantly reduced cell wound-healing migration of both NIH3T3 and HeLa cells. On the other hand, Hep3B cells displayed very few stress fibers and had no obvious changes of stress fiber formation by PTPA knockdown, but significantly reduced cell wound-healing migration. In HeLa cell, PTPA knockdown further increased the level of active RhoA, but decreased the level of active Rac1. Next, we investigated the signaling molecules regulated by PTPA. In NIH3T3 cells, overexpression of the PP2Ac-binding defective mutant form of PTPA (N277K), but not the wild-type PTPA, significantly reduced the levels of C subunits. PTPA knockdown decreased phosphorylation levels of AKT at both T308 and S473. In addition, we investigated the effect of PTPA on mTOR downstream target p70S6K, and found that PTPA knockdown reduced the phosphorylation of p70S6K at T389. In HeLa cells, PTPA knockdown significantly decreased levels of B56 family subunits. In Hep3B cells, PTPA overexpression and knockdown slightly modulated levels of PP2A A, B, and C subunits. In addition, in HeLa and Hep3B cells, PTPA knockdown increased phosphorylation levels of AKT at both S473 and T308. In HeLa cells, PTPA knockdown only reduced the p70S6K protein level. In Hep3B cells, PTPA knockdown increased phosphorylation levels of mTOR downstream target p70S6K and S6, and the AKT downstream target GSK3-β. Overexpression of wild-type PTPA, but not the PP2Ac-binding defective mutant PTPA (N277K), increased the level of E-cadherin, whereas PTPA knockdown reduced the level of E-cadherin. Our data demonstrate that PTPA differentially regulates levels of PP2A/A, PP2Ac, AKT, p70S6K, phospho-AKT Thr308, phospho-AKT Ser473, phospho-p70S6K Thr389 in a cell context-dependent manner. PTPA knockdown results in reduced cell proliferation, reduced amounts of stress fiber, and reduced cell motility in both NIH3T3 and HeLa cells. In addition, PTPA knockdown increased cells switching to spindle-shape morphology and reduced E-cadherin levels, suggesting a role in epithelial to mesenchymal transition (EMT). Together, PTPA has pleiotropic functions in various aspects of cell processes, ranging from cell proliferation to EMT.

    中文摘要………………………………………………………………………………….…I Abstract……………………………………………………………………………...........III 誌謝……………………………………………………………………………………..… V List of Contents…………..................................................................................................VI List of Figures…………………………………………………………………………..VIII List of Tables………………………………………………………………………...……IX List of Abbreviations……………………………………………………………………...X Introduction………………………………………………………………………………..1 Protein phosphatase 2A (PP2A) ………………………………………………………2 A putative model for PP2A biogenesis.………………………………………………..3 Phosphotyrosyl phosphatase activator (PTPA) ……………………………………….4 Structure of PTPA……………………………………………………………………..5 Functions of PTPA…………………………………………………………………….6 Epithelial-Mesenchymal Transitions (EMT)………………..…………………………8 Rho family small GTPase…………………………………………………………….10 Hypothesis………………………………………………………………………………...12 Specific aims…………………………………………………………………………12 Objective……………………………………………………………………………..12 Materials and Methods…………………………………………………………………..13 Antibodies and reagents…………………………………………………………….14 Regents for DNA cloning…………………………………………………………….16 Establishing BiFC expression constructs and BiFC analysis………………………...16 DNA constructs………………………………………………………………………19 shRNA knockdown…………………………………………………………………..19 Cell culture, retro/lenti viral preparation, and cell lines……………………………...20 Transfection by Lipofectamine 2000 (Invitrogen).…………..…………………..22 Immunofluorescence (IF) staining and microscopy………………………………….23 Western blotting……………………………………………………………………...23 Immunoprecipitation (IP) ……………………………………………………………24 Cell proliferation assay……………………………………………………………….25 Wound healing assay…………………………………………………………………25 RhoA/Rac1/Cdc42 activation assay………………………………………………….25 Results……………………………………………………………………………………..27 Observing PTPA and PP2Ac forming a complex cells………………………………28 PTPA regulates cell proliferation……………………………………………………..29 PTPA modulates cell morphology and regulates stress fiber formation……………..29 PTPA knockdown increases the level of active RhoA, but decreases the level of active Rac1………………………………………………………………………………… 30 PTPA regulates cell wound-healing migration……………………………………….31 PTPA differentially regulates various signaling molecules…………………………..32 Conclusion………………………………………………………………………………...34 Discussion…………………………………………………………………………………35 PTPA regulates cell morphology, stress fiber formation and migration……………...36 The inconsistent findings between PTPA knockdown in NIH3T3 and HeLa cells…..37 References………………………………………………………………………………...39 Figures…………………………………………………………………………………….46 Appendix………………………………………………………………………………….76 作者簡歷………………………………………………………………………………….82

    1 Wera, S. & Hemmings, B. A. Serine/threonine protein phosphatases. The Biochemical journal 311 ( Pt 1), 17-29 (1995).
    2 Sents, W., Ivanova, E., Lambrecht, C., Haesen, D. & Janssens, V. The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. The FEBS journal 280, 644-661, doi:10.1111/j.1742-4658.2012.08579.x (2013).
    3 Ruediger, R., Pham, H. T. & Walter, G. Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene 20, 1892-1899, doi:10.1038/sj.onc.1204279 (2001).
    4 Takagi, Y. et al. Alterations of the PPP2R1B gene located at 11q23 in human colorectal cancers. Gut 47, 268-271 (2000).
    5 Sablina, A. A., Hector, M., Colpaert, N. & Hahn, W. C. Identification of PP2A complexes and pathways involved in cell transformation. Cancer research 70, 10474-10484, doi:10.1158/0008-5472.CAN-10-2855 (2010).
    6 Xu, Y. et al. Structure of the protein phosphatase 2A holoenzyme. Cell 127, 1239-1251, doi:10.1016/j.cell.2006.11.033 (2006).
    7 Hemmings, B. A. et al. .alpha.- And .beta.-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 29, 3166-3173, doi:10.1021/bi00465a002 (1990).
    8 Xing, Y. et al. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127, 341-353, doi:10.1016/j.cell.2006.09.025 (2006).
    9 Ruediger, R., Pham, H. T. & Walter, G. Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene 20, 10-15 (2001).
    10 Stone, S. R., Hofsteenge, J. & Hemmings, B. A. Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry 26, 7215-7220, doi:10.1021/bi00397a003 (1987).
    11 Khew-Goodall, Y. & Hemmings, B. A. Tissue-specific expression of mRNAs encoding alpha- and beta-catalytic subunits of protein phosphatase 2A. FEBS letters 238, 265-268 (1988).
    12 Gotz, J., Probst, A., Ehler, E., Hemmings, B. & Kues, W. Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. Proceedings of the National Academy of Sciences of the United States of America 95, 12370-12375 (1998).
    13 Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. The Biochemical journal 353, 417-439 (2001).
    14 Cohen, P. The structure and regulation of protein phosphatases. Annual review of biochemistry 58, 453-508, doi:10.1146/annurev.bi.58.070189.002321 (1989).
    15 Usui, H. et al. Activation of protein phosphatase 2A by cAMP-dependent protein kinase-catalyzed phosphorylation of the 74-kDa B' (delta) regulatory subunit in vitro and identification of the phosphorylation sites. FEBS letters 430, 312-316 (1998).
    16 Xu, Z. & Williams, B. R. The B56alpha regulatory subunit of protein phosphatase 2A is a target for regulation by double-stranded RNA-dependent protein kinase PKR. Molecular and cellular biology 20, 5285-5299 (2000).
    17 Tolstykh, T., Lee, J., Vafai, S. & Stock, J. B. Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. The EMBO journal 19, 5682-5691, doi:10.1093/emboj/19.21.5682 (2000).
    18 Wu, J. et al. Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. The EMBO journal 19, 5672-5681, doi:10.1093/emboj/19.21.5672 (2000).
    19 Ikehara, T., Ikehara, S., Imamura, S., Shinjo, F. & Yasumoto, T. Methylation of the C-terminal leucine residue of the PP2A catalytic subunit is unnecessary for the catalytic activity and the binding of regulatory subunit (PR55/B). Biochemical and biophysical research communications 354, 1052-1057, doi:10.1016/j.bbrc.2007.01.085 (2007).
    20 De Baere, I. et al. Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue. Biochemistry 38, 16539-16547 (1999).
    21 Ogris, E. et al. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. The Journal of biological chemistry 274, 14382-14391 (1999).
    22 Longin, S. et al. An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator. The Biochemical journal 380, 111-119, doi:10.1042/bj20031643 (2004).
    23 Cayla, X. et al. Isolation and characterization of a tyrosyl phosphatase activator from rabbit skeletal muscle and Xenopus laevis oocytes. Biochemistry 29, 658-667, doi:10.1021/bi00455a010 (1990).
    24 Van Hoof, C., Cayla, X., Bosch, M., Merlevede, W. & Goris, J. The phosphotyrosyl phosphatase activator of protein phosphatase 2A. A novel purification method, immunological and enzymic characterization. European journal of biochemistry / FEBS 226, 899-907 (1994).
    25 Fellner, T. et al. A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo. Genes & development 17, 2138-2150, doi:10.1101/gad.259903 (2003).
    26 Van Hoof, C. et al. Specific interactions of PP2A and PP2A-like phosphatases with the yeast PTPA homologues, Ypa1 and Ypa2. The Biochemical journal 386, 93-102, doi:10.1042/bj20040887 (2005).
    27 Van Hoof, C. et al. Molecular cloning and developmental regulation of expression of two isoforms of the catalytic subunit of protein phosphatase 2A from Xenopus laevis. Biochemical and biophysical research communications 215, 666-673 (1995).
    28 Janssens, V. et al. Identification and characterization of alternative splice products encoded by the human phosphotyrosyl phosphatase activator gene. European journal of biochemistry / FEBS 267, 4406-4413 (2000).
    29 Chao, Y. et al. Structure and mechanism of the phosphotyrosyl phosphatase activator. Molecular cell 23, 535-546, doi:10.1016/j.molcel.2006.07.027 (2006).
    30 Magnusdottir, A. et al. The crystal structure of a human PP2A phosphatase activator reveals a novel fold and highly conserved cleft implicated in protein-protein interactions. The Journal of biological chemistry 281, 22434-22438, doi:10.1074/jbc.C600100200 (2006).
    31 Leulliot, N. et al. Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity. Molecular cell 23, 413-424, doi:10.1016/j.molcel.2006.07.008 (2006).
    32 Rempola, B. et al. Functional analysis of RRD1 (YIL153w) and RRD2 (YPL152w), which encode two putative activators of the phosphotyrosyl phosphatase activity of PP2A in Saccharomyces cerevisiae. Molecular & general genetics 262, 1081-1092 (2000).
    33 Van Hoof, C. et al. The Saccharomyces cerevisiae homologue YPA1 of the mammalian phosphotyrosyl phosphatase activator of protein phosphatase 2A controls progression through the G1 phase of the yeast cell cycle. Journal of molecular biology 302, 103-120, doi:10.1006/jmbi.2000.4062 (2000).
    34 Van Hoof, C. et al. The Saccharomyces cerevisiae phosphotyrosyl phosphatase activator proteins are required for a subset of the functions disrupted by protein phosphatase 2A mutations. Experimental cell research 264, 372-387, doi:10.1006/excr.2000.5144 (2001).
    35 Bernal, M., Sanchez-Romero, M. A., Salas-Pino, S. & Daga, R. R. Regulation of fission yeast morphogenesis by PP2A activator pta2. PloS one 7, e32823, doi:10.1371/journal.pone.0032823 (2012).
    36 Goyal, A. & Simanis, V. Characterization of ypa1 and ypa2, the Schizosaccharomyces pombe orthologs of the peptidyl proyl isomerases that activate PP2A, reveals a role for Ypa2p in the regulation of cytokinesis. Genetics 190, 1235-1250, doi:10.1534/genetics.111.138040 (2012).
    37 Jordens, J. et al. The protein phosphatase 2A phosphatase activator is a novel peptidyl-prolyl cis/trans-isomerase. The Journal of biological chemistry 281, 6349-6357, doi:10.1074/jbc.M507760200 (2006).
    38 Azam, S., Drobetsky, E. & Ramotar, D. Overexpression of the cis/trans isomerase PTPA triggers caspase 3-dependent apoptosis. Apoptosis : an international journal on programmed cell death 12, 1243-1255, doi:10.1007/s10495-006-0050-8 (2007).
    39 Luo, Y. et al. PTPA activates protein phosphatase-2A through reducing its phosphorylation at tyrosine-307 with upregulation of protein tyrosine phosphatase 1B. Biochimica et biophysica acta 1833, 1235-1243, doi:10.1016/j.bbamcr.2013.02.005 (2013).
    40 Luo, D. J. et al. Knockdown of phosphotyrosyl phosphatase activator induces apoptosis via mitochondrial pathway and the attenuation by simultaneous tau hyperphosphorylation. Journal of neurochemistry 130, 816-825, doi:10.1111/jnc.12761 (2014).
    41 Guo, F. et al. Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone. Cell research 24, 190-203, doi:10.1038/cr.2013.138 (2014).
    42 Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890, doi:10.1016/j.cell.2009.11.007 (2009).
    43 Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature reviews. Molecular cell biology 7, 131-142, doi:10.1038/nrm1835 (2006).
    44 Kalluri, R. & Neilson, E. G. Epithelial-mesenchymal transition and its implications for fibrosis. The Journal of clinical investigation 112, 1776-1784, doi:10.1172/jci20530 (2003).
    45 Lee, J. M., Dedhar, S., Kalluri, R. & Thompson, E. W. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. The Journal of cell biology 172, 973-981, doi:10.1083/jcb.200601018 (2006).
    46 Van Roy, F. & Berx, G. The cell-cell adhesion molecule E-cadherin. Cellular and molecular life sciences 65, 3756-3788, doi:10.1007/s00018-008-8281-1 (2008).
    47 Stockinger, A., Eger, A., Wolf, J., Beug, H. & Foisner, R. E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. The Journal of cell biology 154, 1185-1196, doi:10.1083/jcb.200104036 (2001).
    48 Jeanes, A., Gottardi, C. J. & Yap, A. S. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27, 6920-6929 (2008).
    49 Fodde, R. & Brabletz, T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Current opinion in cell biology 19, 150-158, doi:10.1016/j.ceb.2007.02.007 (2007).
    50 Kam, Y. & Quaranta, V. Cadherin-bound beta-catenin feeds into the Wnt pathway upon adherens junctions dissociation: evidence for an intersection between beta-catenin pools. PloS one 4, e4580, doi:10.1371/journal.pone.0004580 (2009).
    51 Soto, E. et al. p120 catenin induces opposing effects on tumor cell growth depending on E-cadherin expression. The Journal of cell biology 183, 737-749, doi:10.1083/jcb.200805113 (2008).
    52 Pecina-Slaus, N. Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer cell international 3, 17, doi:10.1186/1475-2867-3-17 (2003).
    53 Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509-514 (1998).
    54 Ridley, A. J. Rho GTPases and cell migration. Journal of cell science 114, 2713-2722 (2001).
    55 Bristow, J. M. et al. The Rho-family GEF Asef2 activates Rac to modulate adhesion and actin dynamics and thereby regulate cell migration. Journal of cell science 122, 4535-4546, doi:10.1242/jcs.053728 (2009).
    56 Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629-635, doi:10.1038/nature01148 (2002).
    57 Rottner, K., Hall, A. & Small, J. V. Interplay between Rac and Rho in the control of substrate contact dynamics. Current biology : CB 9, 640-648 (1999).
    58 Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389-399 (1992).
    59 Bosco, E. E., Mulloy, J. C. & Zheng, Y. Rac1 GTPase: a "Rac" of all trades. Cellular and molecular life sciences 66, 370-374, doi:10.1007/s00018-008-8552-x (2009).
    60 Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421, 753-756, doi:10.1038/nature01423 (2003).
    61 Mo, S. T. et al. Visualization of subunit interactions and ternary complexes of protein phosphatase 2A in mammalian cells. PloS one 9, e116074, doi:10.1371/journal.pone.0116074 (2014).
    62 Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53-62 (1995).
    63 Parri, M. & Chiarugi, P. Rac and Rho GTPases in cancer cell motility control. Cell communication and signaling 8, 23, doi:10.1186/1478-811x-8-23 (2010).
    64 Aspenstrom, P., Fransson, A. & Saras, J. Rho GTPases have diverse effects on the organization of the actin filament system. The Biochemical journal 377, 327-337, doi:10.1042/bj20031041 (2004).
    65 Kim, D.-H. et al. mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery. Cell 110, 163-175, doi:10.1016/S0092-8674(02)00808-5 (2002).
    66 Xue, G. & Hemmings, B. A. PKB/Akt-dependent regulation of cell motility. Journal of the National Cancer Institute 105, 393-404, doi:10.1093/jnci/djs648 (2013).
    67 Zhang, W. & Liu, H. T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell research 12, 9-18 (2002).
    68 McCubrey, J. A. et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et biophysica acta 1773, 1263-1284, doi:10.1016/j.bbamcr.2006.10.001 (2007).
    69 Van Hoof, C. et al. Structure and chromosomal localization of the human gene of the phosphotyrosyl phosphatase activator (PTPA) of protein phosphatase 2A. Genomics 28, 261-272, doi:10.1006/geno.1995.1140 (1995).

    無法下載圖示 校內:2021-02-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE