| 研究生: |
蘇柏任 Su, Bo-Ren |
|---|---|
| 論文名稱: |
利用共振腔設計與腔內雙折射晶體產生具圓柱向量特性之Yb:YAB脈衝雷射 Cavity design for generation of cylindrical vector beam in an Yb:YAB pulse laser with an intra-cavity birefringent crystal |
| 指導教授: |
魏明達
Wei, Ming-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 徑向偏振 、方位角偏振 、Q 開關脈衝 |
| 外文關鍵詞: | Radial polarization, Azimuthal polarization, Q-switched pulses |
| 相關次數: | 點閱:177 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文藉由三面鏡共振腔設計以及在腔內加入雙折射晶體 YVO 4 的方法,來產生 Yb:YAB 晶體之圓柱向量光束, 透過 ABCD 矩陣以 及 G 1 G 2 穩定區 的分析,來找出共振腔穩定區中尋常光 o ray 與非尋 常光 e ray 單獨存在的位置, 而雙折射晶體則可以有效的提升這兩種 光單獨存在的範圍, 在第二段腔長 z 2 為 73.5 cm 時,可以透過調整第 一段共振腔長度 z 1 達到切換徑向偏振 RP 與方位角偏振 AP 的效果 在共振腔內加入聲光調製晶體後,則可以使輸出的圓柱向量光束帶有 Q 開關脈衝,且不影響其偏振品質。
In this thesis, we generate cylindrical vector beam in an Yb:YAB laser by using cavity design and birefringent crystal (YVO4). Through the analysis of the ABCD matrix and the G1G2, we can find the stable region of the cavity. And also we can find the where ordinary ray (o-ray) and extraordinary ray (e-ray) exist separately, the birefringent crystals can substantially increase stable region of o-ray and e-ray. When the cavity length z2 is 73.5 cm, the radial polarization (RP) and azimuthal polarization (AP) can be switched by adjusting the cavity length z1. After adding acousto-optic modulation crystal in the cavity, the cylindrical vector beam with Q-switcheded pulses can be obtained, and the polarization quality won't be affected.
1. Y. Kozawa, and S. Sato, "Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams," Optics Express 18, 10828-10833 (2010).
2. Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Optics express 12, 3377-3382 (2004).
3. F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, "Trapping of low-refractive-index particles with azimuthally polarized beam," J. Opt. Soc. Am. B 26, 2242-2247 (2009).
4. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Physical Review Letters 78, 4713 (1997).
5. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, "Optical dipole traps for neutral atoms," in Advances in atomic, molecular, and optical physics(Elsevier, 2000), pp. 95-170.
6. R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, "Effects of radial and tangential polarization in laser material processing," Physics Procedia 12, 21-30 (2011).
7. V. Niziev, and A. Nesterov, "Influence of beam polarization on laser cutting efficiency," Journal of Physics D: Applied Physics 32, 1455 (1999).
8. A. Nesterov, and V. Niziev, "Laser beams with axially symmetric polarization," Journal of Physics D: Applied Physics 33, 1817 (2000).
9. M. Meier, V. Romano, and T. Feurer, "Material processing with pulsed radially and azimuthally polarized laser radiation," Applied Physics A 86, 329-334 (2007).
10. X. Wang, K. Broch, R. Scholz, F. Schreiber, A. J. Meixner, and D. Zhang, "Topography-correlated confocal Raman microscopy with cylindrical vector beams for probing nanoscale structural order," The journal of physical chemistry letters 5, 1048-1054 (2014).
11. T. Züchner, A. V. Failla, and A. J. Meixner, "Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects," Angewandte Chemie International Edition 50, 5274-5293 (2011).
12. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, "Longitudinal field modes probed by single molecules," Physical Review Letters 86, 5251 (2001).
13. P. Dedecker, B. Muls, J. Hofkens, J. Enderlein, and J.-i. Hotta, "Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams," Optics Express 15, 3372-3383 (2007).
14. A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, "Orientational imaging of subwavelength Au particles with higher order laser modes," Nano letters 6, 1374-1378 (2006).
15. X. Wang, X. Zhuang, F. Wackenhut, Y. Li, A. Pan, and A. J. Meixner, "Power‐and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses," Laser & Photonics Reviews 10, 835-842 (2016).
16. C. Brabetz, S. Busold, T. Cowan, O. Deppert, D. Jahn, O. Kester, M. Roth, D. Schumacher, and V. Bagnoud, "Laser-driven ion acceleration with hollow laser beams," Physics of Plasmas 22, 013105 (2015).
17. J. Vieira, and J. Mendonça, "Nonlinear laser driven donut wakefields for positron and electron acceleration," Physical Review Letters 112, 215001 (2014).
18. Y. Liu, D. Cline, and P. He, "Vacuum laser acceleration using a radially polarized CO2 laser beam," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 424, 296-303 (1999).
19. D. Pohl, "Operation of a ruby laser in the purely transverse electric mode TE01," Applied Physics Letters 20, 266-267 (1972).
20. I. Moshe, S. Jackel, and A. Meir, "Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects," Optics letters 28, 807-809 (2003).
21. K. Yonezawa, Y. Kozawa, and S. Sato, "Compact laser with radial polarization using birefringent laser medium," Japanese Journal of Applied Physics 46, 5160 (2007).
22. A. Ito, Y. Kozawa, and S. Sato, "Selective oscillation of radially and azimuthally polarized laser beam induced by thermal birefringence and lensing," J. Opt. Soc. Am. B 26, 708-712 (2009).
23. Y. Kozawa, K. Yonezawa, and S. Sato, "Radially polarized laser beam from a Nd: YAG laser cavity with a c-cut YVO 4 crystal," Applied Physics B 88, 43 (2007).
24. K.-C. Chang, D.-L. Li, and M.-D. Wei, "Self-sustaining azimuthal polarization in a passively Q-switched Nd: GdVO 4 laser with a Cr 4+: YAG saturable absorber," J. Opt. Soc. Am. B 31, 382-386 (2014).
25. S. Vyas, Y. Kozawa, and S. Sato, "Generation of radially polarized Bessel–Gaussian beams from c-cut Nd: YVO 4 laser," Optics letters 39, 1101-1104 (2014).
26. S. Chen, J. Li, S. Zhou, H. Zhao, and K.-I. Ueda, "Generation of vector polarization in a Nd: YAG laser," Optics express 27, 15136-15141 (2019).
27. Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Optics Letters 30, 3063-3065 (2005).
28. J.-F. Bisson, J. Li, K. Ueda, and Y. Senatsky, "Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon," Optics Express 14, 3304-3311 (2006).
29. M. Stalder, and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Optics letters 21, 1948-1950 (1996).
30. K. Moh, X.-C. Yuan, J. Bu, D. Low, and R. Burge, "Direct noninterference cylindrical vector beam generation applied in the femtosecond regime," Applied Physics Letters 89, 251114 (2006).
31. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, "Efficient extracavity generation of radially and azimuthally polarized beams," Optics letters 32, 1468-1470 (2007).
32. M.-D. Wei, Y.-S. Lai, and K.-C. Chang, "Generation of a radially polarized laser beam in a single microchip Nd: YVO 4 laser," Optics letters 38, 2443-2445 (2013).
33. D. G. Hall, "Vector-beam solutions of Maxwell’s wave equation," Optics letters 21, 9-11 (1996).
34. Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Advances in Optics and Photonics 1, 1-57 (2009).
35. F. Gori, G. Guattari, and C. Padovani, "Bessel-gauss beams," Optics communications 64, 491-495 (1987).
36. C. Phelan, J. Donegan, and J. G. Lunney, "Generation of a radially polarized light beam using internal conical diffraction," Optics express 19, 21793-21802 (2011).
37. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Applied Physics Letters 77, 3322-3324 (2000).
38. L. Novotny, and B. Hecht, Principles of nano-optics (Cambridge university press, 2012).
39. E. Hecht, Optics, 5e (Pearson Education India, 2002).
40. S. O. Kasap, Optoelectronics and photonics (Prentice Hall, 2001).
41. M.-D. Wei, and W.-F. Hsieh, "Cavity-configuration-dependent nonlinear dynamics in Kerr-lens mode-locked lasers," J. Opt. Soc. Am. B 17, 1335-1342 (2000).
42. B. E. Saleh, and M. C. Teich, Fundamentals of photonics (john Wiley & sons, 2019).
43. P. Bélanger, "Beam propagation and the ABCD ray matrices," Optics letters 16, 196-198 (1991).
44. H. Eklund, A. Roos, and S. Eng, "Rotation of laser beam polarization in acousto-optic devices," Optical and Quantum Electronics 7, 73-79 (1975).
45. D.-W. Huang, W.-F. Liu, and C. Yang, "Q-switched all-fiber laser with an acoustically modulated fiber attenuator," IEEE Photonics Technology Letters 12, 1153-1155 (2000).
46. Y.-F. Tzeng, "Process characterisation of pulsed Nd: YAG laser seam welding," The International Journal of Advanced Manufacturing Technology 16, 10-18 (2000).