簡易檢索 / 詳目顯示

研究生: 劉益嘉
Liu, Yi-Chia
論文名稱: 燃燒合成氮化鋁粉體之量產製程開發
Process Development for Scale-Up Production of Aluminum Nitride Based on Combustion Synthesis
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 氮化鋁燃燒合成法
外文關鍵詞: Aluminum Nitride, Combustion synthesis
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗室研究以燃燒合成法製備氮化鋁粉體已相當久的時間,而其技術也相當純熟。而本論文研究為氮化鋁粉體之量產製程開發,自原本之每批次350g放大至1.4kg,再放大至3.5kg,探討製程方法與最佳操作條件。於每批次反應鋁粉為1.4kg之放大生產研究中,在最佳操作條件下,經鄂碎後小於100mesh之氮化鋁粉體其轉化率達99.5%以上,氧含量達0.40wt%以下。於每批次反應鋁粉為3.5kg之放大生產研究中,在最佳操作條件下,經鄂碎後小於100mesh之氮化鋁粉體其轉化率達99.7%以上,氧含量達0.45wt%以下。在市場的需求上,大多數氮化鋁粉體所需粒徑較小,因此本實驗研究亦探討將合成之粉體使用濕式研磨,磨至所需粒徑(D50=3~4μm、D50=1~2μm),並依不同需求使用不同表面改質,使粉體擁有較好的抗濕效果,並使用恆溫恆濕測試、pH值測試氮化鋁粉體改質結果。

    Conbustion synthesis methods for aluminum nitride powder have been developed in our labortary for many years, and several methods have been applicable for commercial production. In this thesis research, the author develops the process for scale-up production of AlN based on the combustion synthesis methods established in our labortary. In the case of using 1.4kg of Al powder for a batch, the conversion of the AlN powder which is under 100 mesh after crushing is higher than 99.5%, and the oxygen content is below 0.45wt% under the optimum operation condition. The particle size of AlN powder is usually required to be small in the current market. In this thesis research, the author also studies the milling of AlN so as to obtain the powder in the size range of D50=3~4μm and D50=1~2μm. In addition, surface treatment of the AlN powder to prevent hydrolysis was also performed during ball-milling process. Finally, the results of anti-hydrolysis is analysed by a constant temperature and humidity test and pH test.

    摘要 ............................................ I Abstract............................................... II 誌謝 ............................................ III 總目錄 .................................................. IV 表目錄 ................................................ VII 圖目錄 .......................................... IX 第一章 緒論 ............................................ 1 1-1 簡介陶瓷材料 ................................... 1 1-2 氮化鋁性質與應用 ................................. 1 1-3 氮化鋁合成方法 ................................... 4 1-4 簡介燃燒合成法 ...................................... 6 1-5 燃燒反應熱力學 ....................................... 8 1-6 燃燒反應動力學 ....................................... 11 1-7 燃燒合成氮化物 ...................................... 12 1-8 氣相反應成核 ....................................... 15 1-8-1 均勻相成核(Homogeneous nucleation) ................. 15 1-8-2 異質相成核(Heterogeneous nucleation) ............... 16 1-9 研究動機 ........................................... 18 第二章 實驗室裝置與藥品 ................................... 20 2-1 大型反應器裝置 ....................................... 20 2-2 大型研磨機裝置 ....................................... 20 2-3 分析儀器 ........................................... 21 2-4 其他儀器設備 ........................................ 22 2-5 藥品 ............................................. 23 第三章 實驗方法 .......................................... 26 3-1 氮化鋁量產製程開發 .............................. 26 3-1-1 製備反應錠 ............................. 26 3-1-1-1 1.4kg 級反應錠 ............................ 26 3-1-1-2 3.5kg 級反應錠 ........................... 26 3-1-2 燃燒合成反應之進行 .............................. 27 3-1-2-1 1.4kg 級反應錠燃燒合成反應之進行 .................. 27 3-1-2-2 3.5kg 級反應錠燃燒合成反應之進行 ................... 28 3-1-3 產物轉化率測詴 ........................... 30 3-1-3-1 原理 ................................ 30 3-1-3-2 實驗步驟 ................................ 30 3-1-3-3 轉化率計算 ........................... 30 3-2 氮化鋁細磨技術建立以及抗濕處理 ...................... 32 3-2-1 研磨前準備 ......................... 32 3-2-2 研磨流程 ............................ 32 3-2-3 研磨後粉體性質測詴 ................................ 33 3-2-3-1 粒徑分析 ........................... 33 3-2-3-2 氮氧分析 .............................. 33 3-2-3-3 恆溫恆濕測詴 ............................ 33 3-2-3-4 純水中pH 值測詴 .............................. 34 第四章 結果與討論 .................................. 35 4-1 實驗結果與討論 .................................. 35 4-2 氮化鋁量產製程開發 .............................. 35 4-2-1 1.4kg 級反應錠 ................................. 38 4-2-1-1 改變反應時氮氣錶壓 ................................ 38 4-2-1-2 改變雙層反應碇外層添加劑量 ...................... 43 4-2-1-3 改變雙層反應碇外層稀釋劑 ........................... 47 4-2-1-4 雙層反應碇外層添加劑與稀釋劑綜合效應 ......... 50 4-2-1-5 1.4kg 級反應錠最佳條件 ....................... 53 4-2-2 3.5kg 級反應錠與最佳條件 ............................ 55 4-3 氮化鋁細磨技術建立以及抗濕處理 ........................ 60 4-3-1 探討氧含量上升原因 .................................. 61 4-3-2 氮化鋁抗濕處理 ............................... 63 4-3-3 氮化鋁細磨技術結果以及抗濕結果 ..................... 64 4-3-3-1 粒徑D50=3~4μm、ABS 改質 ...................... 64 4-3-3-2 粒徑D50=3~4μm、硬酯酸改質....................... 69 4-3-3-3 粒徑D50=1~2μm、ABS 改質 ....................... 75 4-3-3-4 粒徑D50=1~2μm、硬酯酸改質..................... 79 4-4 成本估算 ......................................... 84 第五章 結論 ........................................... 87 參考文獻 ........................... 89 自述 .................................................. 94

    1. 汪建民, 陶瓷技術手冊Ceramic technology handbook, 中華民國科技發展協會, p.781-783(1994).
    2. 吳朗,電子陶瓷-入門,p1-2,(1992).
    3. H. K. Sander.”High-tech ceramics”,C&E News,July 9,(1984).
    4. L. M. Sheppard, “Aluminum nitride. A versatile but challenging material”, American Ceramic Society Bulletin, Vol.69, No.11, p.1801-1812(1990)
    5. N. Kuramoto, H. Taniguchi, and I. Aso, “Development of translucent aluminum nitride ceramics”, American Ceramic Society Bulletin, Vol.68, No.4, p.883-887 (1989).
    6. G. A. Slack, R. A. Tanzilli, R. O. Pohl and J. W. Vandersande, “Intrinsic thermal conductivity of AlN”, Journal of Physics and Chemistry Solids, Vol.48, No.7, p.641-642 (1987).
    7. E. Man, F. Yan, Ame. Cera. Soc., Inc. Vol.26, p.19-54(1994)
    8. T. J. Mroz, Jr., Ceramic Bulletin, Vol.71, No.5, p782,(1992).
    9. Takanori Watari “Shape of AIN powders prepared by Vapor Phase Reaction of AlCl3.NH3-N2”, Journal of the Ceramic Society of Japan, vol.97, No.8, p.864,(1989).
    10. G. Selvaduray and L. Sheet, “Aluminum nitride-review of synthesis methods”, Materials Science and Technology, Vol.9, p.463-473 (1993).
    11. F.J.-H. Haussonne, “Review of the synthesis methods for AlN”, Materials and Manufacturing Process, Vol.10, No.4, p717-775(1995).
    12. A. G. Merzhanov and I. P. Borovinskaya, “New class of combustion processes”, Combustion Science Technology, Vol.10, No.5-6, p.195-201 (1975).
    13. J. F. Crider, “Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials”, in Procrrdings of the 6th Annual Conference on Composites and advances Ceramic Materials: Ceramic Engineering and Science Proceedings, Vol.3 (1982).
    14. S. Kumar, “Self-propagating high temperature synthesis of refractory nitrides, carbides and borides”, Key Engineering Materials, Vol. 56-57,p.183-188(1991).
    15. L. M. Sheppard, “Powders That "Explode" Into Materials”, Adv. Mater. Process, vol.2, No.2 p25-32(1986).
    16. Z.A. Munir, “Synthesis of High Temperature Materials by Self-Propagating Combustion Methods”, Ceram. Soc. Bull., vol.67 No.2, p.342-349 (1988)
    17. J. Subrahmanyam, M. Vijayakumar, “Review Self-propagating high-temperature synthesis” Journal of Materials Science, vol.27, p.6249-6273(1992).
    18. B. I. Khachin and A .G. Merzhanov, “Theory of Thermal Propagating of a Chemical Reaction Front”, Combustion, Explosion, and Shock Waves, Vol.2, No.3, p.22-27(1962).
    19. A. G. Strunina, T. M. Martemyanova, V. V. Barzykin and V. I. Ermakov, “Ignition of Gasless systems by a Combustion Wave”, Combustion, Explosion, and Shock Waves, Vol.10, No.4, p.449-455 (1974).
    20. B. V. Novozhilov, “Burning Velocity of Propagating Front with Exothermic Reaction in Condensed Phase”, Dokl.Akad.Nauk SSSR, Vol.141, p.151-153(1961).
    21. A. G. Merzhanov, “The Theory of Stable Homogeneous Combustion of Condensed Substances”, Combustion and Flame, Vol.13, No.2, p.143-156 (1969).
    22. J. Karpinski and S. Porowski, “High Pressure Thermodynamics of GaN”, J. Crystal Growth, vol.66, p.11-20 (1984).
    23. (a)李威昌,”燃燒法合成高性能材料:製程開發與反應機構探討”,
    成功大學博士論文84年畢業。
    (b)W.C.Lee,C.L.Tu,and S.L. Chung,J.Mater.Res.,10(3),p.774, (1995).
    (c)中華民國專利第71873號、美國第5460794號.
    (d)中華民國專利第67194號、美國第5453407號.
    24. A. S. Mukasyan, V. M. Martynenko, A. G. Merzhanov, I. P. Borvin-skaya,and M. Y. Bilinov, “The Mechanism and Laws of the Combustion of Silicon in Nitrogen”, Combust.Explos.Shock Wave, vol22,p.43-49(1986).
    25. Z. A. Munri and J. B, Holt, “The Combustion Synthesis of Refractory Nitrides”,J. Mater. Sci., vol.22, p.710-714(1987).
    26. A.G.Merzhanov,I.P.Borovinskaya and Y. E. Volodin, Dokl. Phys. Chem.206(1973)833.
    27. M. Eslamloo-Grami and Z. A. Munir, “Effect of Nitrogen Pressure and Diluent Content on the Combustion Synthesis of Titanium Nitride”, Journal of the American Ceramic Society, vol.73, No.8, p.2222-2227(1990).
    28. A.N.Pityulin, V.A.Sheherbakov, I.P.Borovinskaya and A.G. Merzhanov, Combust. Explos. Shock Waves USSR 15(1979)432.
    29. M.Costantino and C. Firpo, “High pressure combustion synthesis of aluminum nitride”, J. Mater. Res., Vol.6, No.11, p.2397-2402(1991).
    30. S. D. Dunmead, Z. A. Munir and J. B. Holt, “Gas-solid reactions under a self-propagating combustion mode”, Solid State Ionics vol.32-33, p.474-481(1989).
    31. I. P. Borovinskaya and V. E. Loryan, “Self-propagating high-temperature synthesis of titanium nitrides under high nitrogen pressures”, Powder Metall. Met. Ceram., vol.17, No.11, p.851-853(1978).
    32. L. M. Sheppard, “Powders That "Explode" Into Materials”, Adv. Mater. Process, vol.2, No.2 p25-32(1986).
    33. J. B. Holt, “Exothermic Process Yields Refractory Nitride Materials”, Ind. Res. Dev.,vol.25, No.4, p89- 91(1983).
    34. E. J. Langham and B. J. Mason, “The Heterogeneous and Homogeneous Nucleation of Supercooled Water”, Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, Vol.247, p.493-504 (1958).
    35. P. B. Price, “Nonbasal Glide in Dislocation-Free Cadmium Crystals. I”, Journal of Applied Physics, Vol.32, No.9, p.1746-1750(1961).
    36. Albert P. Levitt, “Whisker Technology”, p.27-37(1999).
    37. W. S. Jung, H.UK Joo, “Catalytic growth of aluminum nitride whiskers by a modified carbothermal reduction and nitridation method”, Journal of Crystal Growth, Vol.285, p.566-571(2005).
    38. H. Wang, D. O. Northwood, J. Han, S. Du, “Combustion synthesis of AlN whiskers”, Journal of Materials Science, Vol.41, No.6, p.1697-1703 (2006)
    39. 林宏穎, “氮化鋁量產製程技術開發”,成功大學碩士論文 99年畢業。
    40. 張智偉, “燃燒法合成氮化鋁粉體之新製程開發”成功大學碩士論文92年畢業。

    無法下載圖示 校內:2016-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE