簡易檢索 / 詳目顯示

研究生: 蘇玟分
Su, Wen-Fen
論文名稱: 主鏈含電子傳遞噁二唑基團之PPV衍生物的合成與光電性質探討
Synthesis and Optoelectronic Properties of Luminscent PPV Derivative Containing Electron-Transporting Oxadizole Groups
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 110
中文關鍵詞: 高分子電機發光二極體合成
外文關鍵詞: PLED, Synthesis
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子發光二極體(Polymer Light Emitting Diode, PLED) 是利用從陽極、陰極注入的電洞及電子於發光層中再結合而發光,因此電荷注入/傳遞速率之平衡對發光效率有非常大之影響。大部分PLED高分子電洞傳遞速率大於電子,所以可利用多層結構導入電子注入/傳遞層、摻混電子注入/傳遞分子,或是利用化學合成改變分子結構,來提升電子注入/傳遞的能力。
    本研究合成主鏈含電子傳遞1,3,4-噁二唑基團(1,3,4-oxadiazole)與PPV衍生物的高分子,利用Gilch聚合反應合成高分子,探討隨著oxadiazole的含量不同,對高分子的熱性質、光學性質、電化學性質與元件效能有何差異。在熱性質方面,高分子P0~P3並沒有發現熔點(Tm)及玻璃轉移溫度(Tg)的出現,而熱裂解溫度(Td)皆在400 ℃才有明顯的裂解,顯示P0~P3 皆具有高熱穩定性。在光學性質方面,P0~P3薄膜態的最大UV/Vis 吸收及螢光光譜(PL)波長分別在508~515nm 及575~581 nm。在電化學性質方面,利用氧化和還原起始電位分別求出高分子HOMO和LUMO能階,因電子傳遞基團的導入,使高分子LUMO能階都有明顯下降,表示改善了電子注入的能力。元件方面,P0~P3雙層元件的其起始電壓分別為4.1V、3.3 V、3.0 V、4.0 V,而大亮度分別為38 cd/m2、11 cd/m2、118 cd/m2、50 cd/m2,最大電流效率分別為9.7×10-4 cd/A、2.9×10-4 cd/A、3.4×10-3 cd/A、1.4×10-3 cd/A。

    Polymer light emitting diode (PLED) have attracted much interest in recent years because of their potential application in large-area flat panel displays. However, most EL polymers are p-doped devices, the mobility of holes is usually much greater than that of electrons. An optimized PLED should have efficient and balanced charge injection/transport between anode and cathode. In order to achieve balanced charge injection, introducing electron transporting units in polymer backbone can also be employed to balance charge injection.
    In this work, we prepared a series of random copolymers including emitting segments (PPV derivatives) and electron-transporting segments (1,3,4-Oxadiazole) by Gilch polymerization. We investigated the influences of the 1,3,4-Oxadiazloe content on photophysical, electrochemical, and electroluminescent properties of the resulting polymers. These copolymers exhibited good thermal stability with 5% weight loss temperature above 410℃ in nitrogen atmosphere. Optical properties of the polymers were investigated by absorption and photoluminescence spectra. The HOMO and LUMO levels of these polymers have been estimated from their cyclic voltammograms. The electron affinity can be enhanced by introducing electron-transporting segments that lead to charge injection balance.Through the incorporation of 1,3,4-oxadiazole segment, improved device performance was achieved.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 流程目錄 VIII 表 目 錄 IX 圖 目 錄 X 第一章 緒論 1 1-1 前言 1 1-2 理論基礎 4 1-2-1 共軛導電高分子 4 1-2-2 螢光理論 6 1-2-3 影響螢光強度的因素 7 1-3 元件發光原理及結構 10 1-3-1 發光原理 10 1-3-2 單層元件 11 1-3-3 多層元件 13 1-3-4 影響PLED發光效率的因素 15 1-4 OLED未來研究方向 16 第二章 文獻回顧 17 2-1 前言 17 2-2 高分子結構的設計 19 2-2-1 發光波長的調整 19 2-2-2 高分子性質的改善 24 2-3 含1,3,4-噁二唑(1,3,4-Oxadiazole) 電子傳遞性高分子 26 2-3-1 1,3,4-Oxadiazole 基團導入高分子主鏈 27 2-3-2 1,3,4-Oxadiazole 基團導入高分子側鏈 30 2-4 歸納與討論 32 2-5 研究動機 33 第三章 實驗內容 34 3-1 實驗裝置與設備 34 3-2 鑑定儀器 34 3-3 物性及光電特性測量儀器 35 3-4 藥品及材料 38 3-5 合成步驟與結果 41 3-5-1雙溴單體4合成(Scheme 1) 43 3-5-2雙溴單體8合成(Scheme 2) 44 3-5-3 高分子P0~P3之合成(Scheme 3) 45 3-6 聚合反應原理 48 3-6-1 PPV及其衍生物的聚合 48 3-6-2 脫鹵聚縮合反應 49 3-7 循環伏安實驗 50 3-8 元件製作 53 3-8-1 ITO玻璃之清洗: 53 3-8-2 ITO玻璃之蝕刻(Fig. 3-6(a)) 53 3-8-3 高分子發光膜的製作 55 3-8-4 陰極蒸鍍 55 3-8-5 元件量測 57 第四章 結果與討論 58 4-1 單體與高分子結構之合成與鑑定 58 4-1-1紅外光譜(FT-IR) 59 4-1-2核磁共振光譜(NMR) 59 4-1-3元素分析儀(EA) 60 4-2 高分子3-D分子最佳化結構分析 70 4-3 高分子分子量的測定 72 4-4 溶解度測試 73 4-5高分子熱性質分析 74 4-5-1 熱重分析 74 4-5-2微差式掃描熱卡計 75 4-6 光學性質 78 4-6-1 UV/Vis 吸收光譜 78 4-6-2-1 發光波長 79 4-6-2-2 濃度效應 80 4-6-2-3 溶劑效應 81 4-7電化學性質探討 90 4-8 高分子發光二極體(PLED)的元件特性 98 4-8-1電流密度(J)-電壓(V)-亮度(L)特性 98 4-8-2電激發光光譜(Electroluminescence spectra) 99 第五章 結論 104 參考文獻 106 自 述 110 流程目錄 (List of Schemes) Scheme 1 Synthesis of monomers 41 Scheme 2 Synthesis of monomers 41 Scheme 3 Synthesis of polymers P0~P3 42 表 目 錄 (List of Tables) Table 1-1 高分子與小分子電激發光顯示器的比較 3 Table 1-2 取代基對物質螢光波長及效率的影響 9 Table 4-1 The Synthetic Result of Monomers 61 Table 4-2 Polymerization results of polymers P0~P3 61 Table 4-3 Molecular weight characterization of polymers P0~P3 72 Table 4-4 Solubility of polymers P0~P3 73 Table 4-5 Thermal properties of polymers P0~P3 76 Table 4-6 Optical properties of polymer P0~P3 in CHCl3 82 Table 4-7 Optical properties of polymer P0~P3 in C6H4Cl2 82 Table 4-8 Electrochemical properties and band gap of polymers P0~P3 93 Table 4-9 Comparison of the charge transport balance in polymers. 93 Table 4-10 Device properties of polymers P0~P3. 100 圖 目 錄 (List of Figures) Fig. 1-1 聚乙炔之(a)共軛高分子結構(b)能階結構示意圖 5 Fig. 1-2 絕緣體、半導體及導體共價帶與傳導帶的能階分佈 5 Fig. 1-3 各能態中電子自旋的情形 6 Fig. 1-5 光激發光示意圖 11 Fig. 1-6 電激發光示意圖 11 Fig. 1-7 單層元件結構 12 Fig. 1-8 多層元件結構及發光原理 13 Fig. 1-9 電洞傳遞層、發光層與電子傳遞層材料 14 Fig. 2-1 (a) Kodak的Alq3雙層元件 (b) CDT的PPV單層元件 17 Fig. 2-2 有機電激發光的四種系統 18 Fig. 2-3 化學結構的影響 20 Fig. 2-4 立體障礙的影響 21 Fig. 2-5 (a) MEH-PPV (b) CN-dRO-PPV之化學結構 22 Fig. 2-6 (a) An illustration of radiative energy transfer and mechanisms of non-radiative energy transfer via (b) the Coulombic interaction or (c) the electron exchange. 23 Fig. 2-7 導入電子傳遞基團於側鏈的高分子 25 Fig. 2-8 導入電子傳遞基團於主鏈的高分子 26 Fig. 2-9 PPOPH 及PPOOPH之化學結構 27 Fig. 2-10 (a)OXDDSB (b)OXDC12之化學結構 28 Fig. 2-11 PPOX-CAR之化學結構 28 Fig. 2-12 OX0-PPV、OX1-PPV之化學結構 29 Fig. 2-13 OX1-PPV、OX2-PPV之化學結構 29 Fig. 2-14 POPE-PPV之化學結構 30 Fig. 2-15 OXD-PPVC12之化學結構 30 Fig. 2-16 POPD-PPV之化學結構 31 Fig. 2-17 CO-PE6之化學結構 31 Fig. 2-18 Oxa-PPV-co-DMOP-PPV之化學結構 32 Fig. 3-1 除水裝置 45 Fig. 3-2 合成PPV系列高分子的方法 49 Fig. 3-3 脫鹵聚縮合之 mechanism 49 Fig. 3-6 ITO玻璃之(a)蝕刻及(b)鍍膜 54 Fig. 3-7 The diagram illustration of the evaporation system. 56 Fig. 3-8 元件示意圖 56 Fig. 4-1 FT-IR spectrum of 1-(2-ethylhexyloxy)-4-methoxybenzene (3). 62 Fig. 4-2 FT-IR spectrum of 1-(2-ethylhexyloxy)-2,5-bis(bromomethyl)-4- methoxybenzene (4). 62 Fig. 4-3 FT-IR spectrum of Di-(4-methylphenyl)-bis-dihydrazide (6). 63 Fig. 4-4 FT-IR spectrum of 2,5-Bis(4-methylphenyl)-1,3,4-oxadiazole (7). 63 Fig. 4-5 FT-IR spectrum of 2,5-Bis[4-(bromomethyl)phenyl]-1,3,4-oxadiazole (9).64 Fig. 4-6 FT-IR spectrum of P0~P3. 64 Fig. 4-7 1H-NMR spectrum of 1-(2-ethylhexyloxy)-4-methoxybenzene (3). 65 Fig. 4-8 1H-NMR spectrum of 1-(2-ethylhexyloxy)-2,5-bis(bromomethyl)- 4-methoxybenzene (4). 65 Fig. 4-9 1H-NMR spectrum of Di-(4-methylphenyl)-bis-dihydrazide (6). 66 Fig. 4-10 1H-NMR spectrum of 2,5-Bis(4-methylphenyl)-1,3,4-oxadiazole (7). 66 Fig. 4-11 1H-NMR spectrum of 2,5-Bis[4-(bromomethyl)phenyl]- 1,3,4-oxadiazole (9). 67 Fig. 4-12 1H-NMR spectrum of P0. 67 Fig. 4-13 1H-NMR spectrum of P1. 68 Fig. 4-14 1H-NMR spectrum of P2. 68 Fig. 4-15 1H-NMR spectrum of P3. 69 Fig. 4-16 M1之3-D分子最佳化結構 70 Fig. 4-17 M2之3-D分子最佳化結構 71 Fig. 4-18 M3之3-D分子最佳化結構 71 Fig. 4-19 Thermogravimetric curves of P0~P3 with heating rate of 20℃/min in nitrogen. 76 Fig. 4-20 Thermogravimetric curves of P0~P3 with heating rate of 20℃/min in air. 77 Fig. 4-21 Differential scanning calorimetric curves of P0~P3 obtained From the second scan with a heating rate of 10℃/min. 77 Fig. 4-22 UV/Vis absorption and photoluminescence spectra of P0~P3 in CHCl3 solution. (λexc=510 nm) 83 Fig. 4-23 UV/Vis absorption and photoluminescence spectra of P0~P3 in film state. (λexc=510 nm) 83 Fig. 4-24 Photoluminescence spectra of P0 at different concentration in CHCl3 solution. 84 Fig. 4-25 Photoluminescence spectra of P1 at different concentration in CHCl3 solution. 84 Fig. 4-26 Photoluminescence spectra of P2 at different concentration in CHCl3 solution. 85 Fig. 4-27 Photoluminescence spectra of P3 at different concentration in CHCl3 solution. 85 Fig. 4-28 Normalized photoluminescence spectra of P0~P3 at different concentration in CHCl3 solution. 86 Fig.4-29 UV/Vis absorption and photoluminescence spectra of P0~P3 in C6H4Cl2 solution. (λexc=510 nm) 87 Fig. 4-30 UV/Vis absorption and photoluminescence spectra of P0~P3 in film state. (λexc=510 nm) 87 Fig. 4-31 Photoluminescence spectra of P0~P3 in CHCl3 solution.(λexc=330 nm) 88 Fig. 4-32 The picture of P0~P3 in CHCl3 solution by UV-light. (λexc=365 nm) 88 Fig. 4-33 Photoluminescence spectra of P0~P3 in C6H4Cl2 solution.(λexc=330 nm)89 Fig. 4-34 The picture of P0~P3 in C6H4Cl2 solution by UV-light. (λexc=365 nm) 89 Fig. 4-35 Cyclic voltammogram of ferrocene/ferrocenium in 0.1 M n-Bu4NClO4 ; using ITO as working electrode with a scan rate of 100 mv/s. 94 Fig. 4-36 Cyclic voltammogram of ITO in 0.1 M n-Bu4NClO4 with a scan rate of 100 mv/s. 94 Fig. 4-37 Cyclic voltammogram of P0 in 0.1 M n-Bu4NClO4 with a scan rate of 100 mv/s. 95 Fig. 4-38 Cyclic voltammogram of P1 in 0.1 M n-Bu4NClO4 with a scan rate of 100 mv/s. 95 Fig. 4-39 Cyclic voltammogram of P2 in 0.1 M n-Bu4NClO4 with a scan rate of 100 mv/s. 96 Fig. 4-40 Cyclic voltammogram of P3 in 0.1 M n-Bu4NClO4 with a scan rate of 100 mv/s. 96 Fig. 4-41 Energy level diagram of P0~P3 from the cyclic voltammogram. 97 Fig. 4-42 M1之(a)HOMO (b)LUMO示意圖. 97 Fig. 4-43 Current density (▲)-voltage-luminance(●) characteristics of ITO/PEDOT:PSS /P0/Al . 100 Fig. 4-44 Current density (▲)-voltage-luminance(●) characteristics of ITO/PEDOT:PSS /P1/Al . 101 Fig. 4-45 Current density (▲)-voltage-luminance(●) characteristics of ITO/PEDOT:PSS /P2/Al . 101 Fig. 4-46 Current density (▲)-voltage-luminance(●) characteristics of ITO/PEDOT:PSS /P3/Al . 102 Fig. 4-47 Electroluminescence spectra and photoluminescence spectra of ITO/PEDOT:PSS/P0~P3/Al. 102 Fig. 4-48 Electroluminescence spectra of ITO/PEDOT:PSS/P0~P3/Al in different voltage. 103 Fig. 4-49 The CIE1931 chromaticity coordinates of the emission of P0~P3 103

    [ 1] M. Pope , H. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
    [ 2] C. W. Tang , S. A.Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
    [ 3] J. H. Burroughes, D. D. C. Bradly, A. R. Brovn, R. N. Morks, K. Mackay, R. H. Friend, P. L. Burmond, A. B. Holmes, Nature, 374, 539 (1990).
    [ 4] 段啟聖;化工資訊與商情,第26期,P.40,民國94年8月.
    [ 5] 郭昭輝;塑膠資訊雜誌,民國91年10月.
    [ 6] D. A. Skoog, E. J. Holler, T. A. Nieman, Principles of Instrumental
    Analysis, 5th edition, Saunders College Publishing, (1997).
    [ 7] 黃孝文, 陳雲;化工資訊月刊,第15卷第3期,P.8,2001.
    [ 8] 葉昆明,陳雲;科學發展,第385期,P.58,2005年1月.
    [ 9] 陳信宏,陳雲;中工高雄會刊,第3期,P.72,2006年.
    [10] 楊素華;光訊雜誌,第98 期,P.29,2002 年10 月.
    [ 11] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny,Nature, 409, 494 (2001).
    [12] 陳金鑫;光訊雜誌,第65期,P.12,民86年4月.
    [13] J. L. Segura, Acta Polym., 49, 319 (1998).
    [14] J. C Scott, J. H. Kaufman, P. J. Brock, R. Dipietro, J. Salem, J. A. Goitia, J. Apply. Phys., 79, 2745 (1996).
    [15] T. Zyung, J. -J. Kim, Appl. Phys. Lett., 67, 3420 (1995).
    [16] J. L. Bredas, A. J. Heeger, Chem. Phys. Lett., 217, 507 (1994).
    [17] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holms, Nature, 365, 628 (1993).
    [18] Z. Yang, I. Sokolik, F. E. Karasz, Macromolecules, 26, 1188 (1993).
    [19] 陳金鑫,黃孝文;有機電激發光材料與元件,2005年9月.
    [20] 趙慶勳,郭耀興,段啟聖;化工資訊雜誌,P.18,2002年5月.
    [21] Z. K. Chen, H. Meng, Y. H. Lai, W. Huang, Macromolecules, 32, 4351 (1999).
    [22] Z. Bao, Z. Peng, M. E. Galvin, E. A. Chandross, Chem. Mater., 10, 1201 (1998).
    [23] A. W. Grice, A. Tajbakhsh, P. L. Burn, D. D. C. Bradley, Adv. Mater., 9, 1174 (1997).
    [24] Z. Peng, Z. Bao, M. E. Galvin, Adv. Mater., 10, 680 (1998).
    [25] S. Y. Song, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung, Macromolecules, 32, 1482 (1999).
    [26] Q. Pei, Y. Yang, Adv. Mater., 6, 559 (1995).
    [27] Z. Peng, Z. Bao, M. E. Galvin, Adv. Mater., 10, 680 (1998).
    [28] S. Y. Song, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung,
    Macromolecules, 32, 1482 (1999).
    [29] J. A. Mikroyannidis, I. K. Spiliopoulos, T. S. Kasimis,
    Macromolecules, 36, 9295 (2003).
    [30] J. A. Mikroyannidis, I. K. Spiliopoulos, T. S. Kasimis, A. P. Kulkarni, S. A. Jenekhe, Journal of Polymer Science: Part A: Polymer Chemistry, 42, 2112 (2004).
    [31] Z. Bao, Z. Peng, M. E. Galvin, E. A. Chandross, Chem. Mater., 10, 1201 (1998).
    [32] Y. Z. Lee, X. Chen, S. A. Chen, P. K. Wei, W. S. Fann, J. Am. Chem. Soc.,123,2296 (2001).
    [33] X. Sun, M. Li, D. Liu, P. Zhang, W. Tian, Journal of Applied Polymer Science, 91, 396 (2004).
    [34] S. H. Jin, M. Y. Kim, J. Y. Kim, K. Lee, Y. S. Gal, J. Am. Chem. Soc., 126, 2474(2004).
    [35] J. F. Rusling, S. L. Suib, Adv. Mater., 12, 922 (1994).
    [36] (a)R. F. Heck, Acc. Chem. Res., 12, 146 (1979). (b) S. T. Pasco, P. M.
    Lahti, F. E. Karasz, Macromolecules, 32, 6933 (1999).
    [37] H. K. Kim, M.-K. Ryu, K.-D. Kim, S.-M. Lee, S.-W. Cho, J.-W. Park,
    Macromolecules, 31, 1114 (1998).
    [38] H. G. Gilch, W. L. Wheelwright, Journal of Polymer Science: Part A: Polymer Chemistry, 4, 1337 (1966).
    [39] W. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc., 83, 1733 (1961).
    [40] B. R. Hsieh, Y. Yu, E. W. Forsythe, G. M. Schaaf, W. A. Feld, J. Am. Chem. Soc., 120, 231 (1998).
    [41] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta Polym., 50, 105 (1999).
    [42] H. Meng, W. L. Yu, W. Huang, Macromolecules, 32, 8841 (1999).
    [43] Z.K. Chen, N. H. S. Lee, W. Huang, Macromolecules, 36, 1009 (2003).
    [44] H. Becker, H. Spreitzer, W. Kreuder, E. Kluge, H. Schenk, I. Parker, Y. Cao, Adv. Mater., 12, 42 (2000).
    [45] 王宗櫚、謝達華、何國賢, “聚合物的合成與鑑定法”, (1995).
    [46] H. Meng, W.-L. Yu, W. Huang, Macromolecules, 32, 8841 (1999).
    [47] 郭宗枋,劉杰,楊陽;光訊雜誌,第86期,P.8,2000年10月.
    [48] S. Quan, F. Teng, Z. Xu ,L. Qian,Y. Hou, Y.Wang, X. Xu, European Polymer Journal, 42, 228 (2004).
    [49] L. S. Yu, S. A. Chen, Adv. Mater., 16, 744 (2004).
    [50] 許榮賓, ” 含發光基及噁二唑基高分子的合成及光電性質探討”, 國 立成功大學化學工程研究所碩士論文,民國91年.
    [51] 劉挺中,” 主鏈含噻吩及馬來醯亞胺衍生物高分子的合成與光電性質”, 國立成功大學化學工程研究所碩士論文,民國94年.
    [52] 劉建欣,”主鏈含Fluorene與Carbazole之高分子於奈米環境中的光電
    性質”,國立成功大學化學工程研究所碩士論文,民國93年.
    [53] R. D. McCullough, R. D. Lowe, S. Tristramnagle, S. P. Williams, M. Jayaraman, J. Am. Chem. Soc., 26, 4457 (1993).
    [54] T. Osaka, S. Komada, K. Fujihana, N. Okamoto, N. Kaneko, Chem.Lett., 1023 (1995).
    [55] T. Osaka, S. Komada, K. Fujihana, N. Okamoto, N. Kaneko, J.
    Electrochem. Soc., 114, 743(1997).
    [56] T. Osaka, S. Komada, K. Fujihana, N. Okamoto, N. Kaneko, Chem. Lett., 923 (1995).
    [57] Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimotoo, T. Nakada, H. Nakada, Y. Yonemoto, S. Kawami, K. Imai, Appl. Phys. Lett., 65. 807 (1994).
    [58] Y. A. One, Electroluminescent Displays (1995).
    [59] H. Wei, M. Hong, W.L. Yu, J. Pei, Z. K. Chen, Y.H. Lai,
    Macromolecules, 32, 118 (1999).
    [60] B. Liu, W.L. Yu, Y.H. Lai, W. Hunag, Chem. Mater., 13, 1984 (2001).
    [61] L. Ding, Daniel A. M. Egbe, Frank E. Karasz, Macromolecules, 37, 6124 (2004).

    下載圖示 校內:2009-07-05公開
    校外:2011-07-05公開
    QR CODE