研究生: |
蔡守榕 Tsai, Shou-June |
---|---|
論文名稱: |
含挫屈束制支撐外伸臂系統高層結構耐震行為研究與最佳化設計 Seismic performance and optimal design of high-rise building incorporating buckling-restrained brace outrigger system |
指導教授: |
林保均
Lin, Pao-Chun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 282 |
中文關鍵詞: | 高樓層結構 、外伸臂桁架系統 、挫屈束制支撐 、非線性反應譜分析 、最佳化結構設計 |
外文關鍵詞: | high-rise building, outrigger system, buckling-restrained brace, response spectral analysis, optimization design |
相關次數: | 點閱:152 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究主要目的為進行含阻尼器外伸臂系統結構最佳化設計與探討高樓層建築之耐震性能,重點為利用外伸臂桁架系統以降低結構物之受震反應。相較於傳統型外伸臂,特別對加裝阻尼器之外伸臂系統結構進行探討,藉由阻尼器以增加結構物阻尼比達到消能效果。而此研究所使用阻尼器為挫屈束制支撐(buckling-restrained brace, BRB),因BRB具有良好的軸拉與軸壓力發展強度,受壓時無須考量挫屈問題與良好的消能行為,故將其特殊的力學行為加入外伸臂桁架系統中。預期在小地震下因較大的彈性勁度以及面臨大地震時透過BRB的能量消散機制以減緩結構物受震反應。此研究利用OpenSees軟體進行參數研究,分析模型主要分成核心結構、外伸臂桁架系統與外周柱,桿件尺寸皆在考量工程實務與耐震規範要求下,選擇合理之桿件尺寸進行完整的結構模型設計。此研究主要以配置兩組外伸臂系統做為探討目標,將其分析模型透過嚴謹的方式加以簡化,分別建立出樓高為72、144、216與288公尺之20、40、60與80層之分析模型。方法主要為藉由非線性反應譜分析進行多種結構參數組合之參數分析,包含不同的外伸臂高程及BRB與外周柱的勁度比例,並以非線性歷時分析驗證其受震反應結果,探討不同樓高模型在裝置含阻尼器外伸臂桁架系統下,其提升耐震性能的效益,並探討與分析BRB的消能表現。最後進行風力分布之側推分析,檢核並篩選恰當的BRB尺寸,以避免BRB在風力作用下發生非線性變形。研究結論為在不同樓高模型中分別得出最佳的性能反應結果,整合出適合於不同樓高之最佳的結構參數以達到結構最佳化設計之目的,並依據前述分析反應結論與探討,提出外伸臂桁架系統之高層建築的建議與設計流程。
This study's purposes are to investigate the seismic performance of high-rise buildings with damped-outrigger system and to optimize the structural design of the damped-outrigger system structure. The damper in the damped-outrigger system used in this research is buckling-restrained brace (BRB) because of its satisfactory development in axial strength in both tension and compression. This study utilizes OpenSees numerical software to construct analytical models that contain two layers of damped-outrigger systems. The analytical models with heights of 72, 144, 216, and 288m are studied, and each story height is 3.6m. In order to conduct parameter study with large amount of numerical models, the structural parameters will be changed automatically in the analytical models after conducting each nonlinear response spectral analysis (RSA) by using OpenSees and Matlab programming. In addition, the nonlinear response history analysis (NLRHA) is conducted to verify the results obtained from the RSA results. Based on the analysis results, the range of parameters for optimization can be different with different optimization targets and building heights. For example, lower outrigger truss elevation is suitable for limiting overturing moment for low-rise structure. Finally, the pushover analysis under wind load effect is conducted to check if the BRB remains elastic to confirm the allowable range of utilizing damped-outrigger system with BRB. This study concludes with the optimal configurations of outrigger elevations, BRB stiffness with different building heights. According to the analysis results, this study proposes a design recommendation of damped-outrigger system with BRB in high-rise structure for practicing engineers.
1. Engineering H. 應用諧調液體阻尼器於台北 101 大樓減振之探討. 2011;23(3).
2. OpenSees command manual. https://opensees.berkeley.edu/wiki/index.php/Command_Manual.
3. Lin P. 挫屈束制支撐構架設計概要與工程應用. 2015;30(1):11-33.
4. Smith S, Salim I. Parameter Study of Outrigger-Braced Tall Building Structures. Journal of the Structural Division. Published online 1981.
5. Smith RJ, Willford MR. The damped outrigger concept for tall buildings. Structural Design of Tall and Special Buildings. Published online 2007. doi:10.1002/tal.413
6. Chen Y, McFarland DM, Wang Z, Spencer BF, Bergman LA. Analysis of Tall Buildings with Damped Outriggers. Journal of Structural Engineering. 2010;136(11):1435-1443. doi:10.1061/(asce)st.1943-541x.0000247
7. Ping T, Chuangjie F, Fulin Z. Dynamic characteristics of a novel damped outrigger system. 2014;13(2):293-304.
8. Huang B, Takeuchi T. Dynamic response evaluation of damped-outrigger systems with various heights. Earthquake Spectra. 2017;33(2):665-685. doi:10.1193/051816EQS082M
9. Lin PC, Takeuchi T, Matsui R. Seismic performance evaluation of single damped-outrigger system incorporating buckling-restrained braces. Earthquake Engineering and Structural Dynamics. 2018;47(12):2343-2365. doi:10.1002/eqe.3072
10. AISC. Specification for Structural Steel Buildings, ANSI / AISC 360-16. American Institute of Steel Construction. Published online 2016.
11. ANSI/AISC 341-16. Seismic Provisions for Structural Steel Buildings.; 2016. doi:111
12. Wood ALT. Damping Techonologies for Tall Buildings.; 2019. https://www.bcj.or.jp/download/wave/
13. Anon. Minimum design loads for buildings and other structures. ANSI/ASCE Standard. doi:10.1061/9780872629042
14. ACI 318-14. ACI 318-14 - Building Code Requirements for Structural Concrete.; 2014.
15. 內政部營建署. 建築物耐震設計規範及解說.
16. CSI Analysis Reference Manual. https://wiki.csiamerica.com/display/doc/CSI+Analysis+Reference+Manual.
17. Lin BZ, Chung MC TK. Object-oriented development and application of a nonlinear structural analysis framework. Published online 2009.
18. 內政部營建署. 建築物耐風設計規範及解說.
19. Chopra AK, Goel RK. A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings. Earthquake Engineering and Structural Dynamics. Published online 2004. doi:10.1002/eqe.380
20. Kasai K, Fu Y, Watanabe A. Passive Control Systems for Seismic Damage Mitigation. Journal of Structural Engineering. 1998;124(5):501-512. doi:10.1061/(asce)0733-9445(1998)124:5(501)
21. 日本建築学会関東支部. 学びやすい構造設計‐耐震構造の設計.; 2003.
22. Gupta A, Krawinkler H. Seismic Demands for Performance Evaluation of Steel.; 1999.
23. Lu Z, He X, Zhou Y. Performance-based seismic analysis on a super high-rise building with improved viscously damped outrigger system. Structural Control and Health Monitoring. 2018;25(8):1-21. doi:10.1002/stc.2190