簡易檢索 / 詳目顯示

研究生: 吳欣陵
Wu, Hsin-Ling
論文名稱: 綠茶多酚EGCG減緩老化促進小鼠肌少症之研究
The green tea polyphenol epigallocatechin-3-gallate attenuates sarcopenia in senescence-accelerated mouse model.
指導教授: 張素瓊
Chang, Sue-Joan
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 100
中文關鍵詞: EGCG肌少症老化老化促進小鼠粒線體動態平衡
外文關鍵詞: EGCG, Sarcopenia, Aging, SAMP8 mice
相關次數: 點閱:122下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據歐洲肌少症聯盟(European Working Group on Sarcopenia in Older People, EWGSOP),肌少症為「隨年紀增加而流失的肌肉質量和功能下降」。2015年內政部統計,我國65歲以上長者,肌少症盛行率約9%,平均每10名老年人就有1人患有肌少症;80歲以上高齡長者,肌少症盛行率更增至15%,每7人就有1人患有肌少症。目前已知罹患肌少症可能造成疾病發生率提高、生活品質降低、甚至死亡,然而卻沒有有效治療肌少症的方法。兒茶素又稱為茶多酚,為茶葉中黃烷醇類總稱,主要為多種化合組成,其中以(-) –Epigallocatechin-3-gallate (EGCG)為綠茶萃取物中含量最高成分,先前本實驗室發現,在40週齡SAMP8(senescence-accelerated mouse prone 8)小鼠的肌肉組織中,Akt活性及GLUT4表達降低,推斷SAMP8小鼠的肌肉有胰島素抗性。而餵食SAMP8小鼠每公斤含有3.2g EGCG飼料,可增加肌肉組織中Akt活性、提高GLUT4表達以及活化AMPK,進而降低血糖與胰島素。Akt透過調控mTOR/p70s6k 與FoxO- MuRF-1/Atrogin-1訊息路徑,是骨骼肌蛋白質合成與降解的重要調節因子。因此,本研究利用老化促進鼠SAMP8來探討EGCG是否會能緩解老化導致的肌肉質量流失進而改善肌少症。首先我們利用SAMP8小鼠建立肌少症實驗動物模式,觀察12、24、32、40週齡之SAMP8小鼠,發現SAMP8小鼠之四肢握力由12週齡持續增加至32週齡開始顯著下降,然而肌肉質量在40週齡時則顯著降低。上述結果得知,SAMP8小鼠在32週齡可定義為肌少症前期(pre-sarcopenia),直到40週齡即為肌少症(sarcopenia)。接著,將SAMP8分為一般飼料組及餵食EGCG組(每公斤飼料含3.2公克EGCG) 。其中餵食EGCG組又分為預防組(由24週餵養至40週)及治療組(由32週餵養至40週),並以SAMR1作為對照組。結果顯示,餵食EGCG可以有效提升SAMP8小鼠四肢握力強度、肌肉質量及肌肉纖維截面積,因此,給予EGCG皆可預防及改善肌肉流失。進一步探討其分子機制發現,EGCG可以增加AKT/mTOR/p70s6k訊息路徑以增加蛋白質合成,並減低FoxO入核以降低肌肉萎縮基因MuRF-1和Atrogin-1表達來降低泛素蛋白酶體系統(Ubiquitin-proteasome system)的蛋白質降解。EGCG亦透過活化mTOR訊息傳導路徑調控細胞自噬(Autophagy),mTOR活化亦可抑制自噬體膜形成所需的相關蛋白Atg13,Atg13是決定啟動自噬作用與否的重要蛋白,EGCG可以抑制Atg13蛋白表達進而再藉由抑制LC3及P62活性來減少自噬作用的發生。本研究進一步利用老化促進鼠SAMP8探討老化過程中,粒線體的動態平衡在綠茶多酚EGCG改善肌少症的角色。結果顯示在給予EGCG後可以有效改善兩組SAMP8小鼠粒線體融合(Mfn1、Mfn2與OPA1)及粒線體分裂(Drp1、Fis1與Mff1)的相關基因表達,進而維持細胞內粒線體動態平衡,由研究結果得知老化肌肉中粒線體動態平衡的機制改變主要是造成老化引起的粒線體功能失調。研究發現老化促進小鼠(SAMP8)可作為肌少症研究的動物模式。餵食EGCG可以有效改善老化促進小鼠粒線體動態平衡的相關基因表達,藉由降低「自噬-溶酶體系統」和「泛素-蛋白酶體途徑」的活化延緩蛋白降解。此外,餵食EGCG也藉由活化Akt/mTOR途徑促進蛋白質合成。本研究結果推論,EGCG減緩老化時期肌肉蛋白降解是透過改變粒線體融合與分裂的平衡以及自噬流通改善粒線體品質控管,因而可能進一步提升粒線體的功能及活性來延長粒線體壽命,從而增加骨骼肌蛋白質合成和減少蛋白質降解,並延緩老化而有效改善肌少症。

    SUMMARY
    The purpose of this study was to investigate the efficacy of EGCG on age-associated skeletal muscle atrophy in Senescence-accelerated mouse (SAM) prone 8 (SAMP8). SAMP8 shortens the process of aging and may facilitate an alternative model for studying aging-related sarcopenia. (-) –Epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, has been shown to improve muscle function in a mouse model of muscular dystrophy and to attenuate atrophy in cancer cachexia. In present study, molecular mechanism of aging-related skeletal muscle atrophy in SAMP8 model of sarcopenia established by our laboratory at aged 12, 24, 32, and 40 weeks was investigated. Results showed that the peaks of muscle mass and muscle strength were observed at aged 32 weeks and the declines of that were observed at aged 40 weeks. Therefore, 32-week-old SAMP8 mice were fed with control diet or control plus 0.32 % of EGCG diet for 8 weeks. SAMP8 supplemented with EGCG had significantly greater gastrocnemius muscle mass, fiber cross-sectional areas and muscle strength than that of SAMP8 without EGCG supplement. In addition, EGCG ameliorated both muscle-specific E3 ubiquitin ligase including MuRF-1 and Atrogin-1 and mitochondrial dynamics fusion and fission, which contribute to the inhibiting autophagy evidenced in SAMP8 mice.In summary, mitochondrial quality control is an unique target for sarcopenia therapy due to it dysfunction as a primary instigator of sarcopenia. EGCG supplement acts on mitochondrial quality control via restoring mitochondrial biogenesis, mitochondrial fusion and fission, and autophagic flux, thus contributing to balance of skeletal muscle protein synthesis and degradation.

    Keyword: EGCG, Sarcopenia, Aging, SAMP8 mice

    中文摘要 I 英文摘要 IV 致謝 VII 目錄 VIII 圖目錄 X 第一章 前言 1 第二章 文獻回顧 4 第一節、肌少症 4 第二節、老化 5 第三節、老化動物模式 5 第四節、肌肉生合成的分子機制 7 第五節、粒線體動態平衡 13 第六節、(-) –Epigallocatechin-3-gallate (EGCG) 17 第三章 材料與方法 21 第一節、實驗材料 21 第二節、實驗方法 29 第三節、實驗架構 41 第四章 結果 43 第五章 討論 51 第六章 結論 61 第七章 文獻參考 62

    Adams, J., 2004. The proteasome: a suitable antineoplastic target. Nature Reviews Cancer 4, 349.
    Altun, M., Besche, H.C., Overkleeft, H.S., Piccirillo, R., Edelmann, M.J., Kessler, B.M., Goldberg, A.L., Ulfhake, B., 2010. Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. Journal of Biological Chemistry 285, 39597-39608.
    Argilés, J.M., Campos, N., Lopez-Pedrosa, J.M., Rueda, R., Rodriguez-Mañas, L., 2016. Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. Journal of the American Medical Directors Association 17, 789-796.
    Attaix, D., Ventadour, S., Codran, A., Béchet, D., Taillandier, D., Combaret, L., 2005. The ubiquitin–proteasome system and skeletal muscle wasting. Essays in Biochemistry 41, 173-186.
    Auvichayapat, P., Prapochanung, M., Tunkamnerdthai, O., Sripanidkulchai, B.-o., Auvichayapat, N., Thinkhamrop, B., Kunhasura, S., Wongpratoom, S., Sinawat, S., Hongprapas, P., 2008. Effectiveness of green tea on weight reduction in obese Thais: A randomized, controlled trial. Physiology & Behavior 93, 486-491.
    Baehr, L.M., Tunzi, M., Bodine, S.C., 2014. Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression. Frontiers in Physiology 5, 69.
    Barazzoni, R., Short, K.R., Nair, K.S., 2000. Effects of aging on mitochondrial DNA copy number and cytochromec oxidase gene expression in rat skeletal muscle, liver, and heart. Journal of Biological Chemistry 275, 3343-3347.
    Belza, A., Toubro, S., Astrup, A., 2009. The effect of caffeine, green tea and tyrosine on thermogenesis and energy intake. European Journal of Clinical Nutrition 63, 57.
    Bodine, S.C., Stitt, T.N., Gonzalez, M., Kline, W.O., Stover, G.L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J.C., Glass, D.J., 2001. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biology 3, 1014.
    Bonifacio, A., Sanvee, G.M., Bouitbir, J., Krähenbühl, S., 2015. The AKT/mTOR signaling pathway plays a key role in statin-induced myotoxicity. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1853, 1841-1849.
    Bousquet, C., Lasfargues, C., Chalabi, M., Billah, S.M., Susini, C., Vezzosi, D., Caron, P., Pyronnet, S., 2012. Current scientific rationale for the use of somatostatin analogs and mTOR inhibitors in neuroendocrine tumor therapy. The Journal of Clinical Endocrinology & Metabolism 97, 727-737.
    Bowen, T.S., Schuler, G., Adams, V., 2015. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. Journal of Cachexia, Sarcopenia and Muscle 6, 197-207.
    Brown, M.K., Evans, J.L., Luo, Y., 2006. Beneficial effects of natural antioxidants EGCG and α-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacology Biochemistry and Behavior 85, 620-628.
    Burger, A.M., Seth, A.K., 2004. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. European Journal of Cancer 40, 2217-2229.
    Butterfield, D.A., Poon, H.F., 2005. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. Experimental Gerontology 40, 774-783.
    Call, J.A., Voelker, K.A., Wolff, A.V., McMillan, R.P., Evans, N.P., Hulver, M.W., Talmadge, R.J., Grange, R.W., 2008. Endurance capacity in maturing mdx mice is markedly enhanced by combined voluntary wheel running and green tea extract. Journal of Applied Physiology 105, 923-932.
    Camporez, J.-P.G., Petersen, M.C., Abudukadier, A., Moreira, G.V., Jurczak, M.J., Friedman, G., Haqq, C.M., Petersen, K.F., Shulman, G.I., 2016. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proceedings of the National Academy of Sciences 113, 2212-2217.
    Chan, N.C., Salazar, A.M., Pham, A.H., Sweredoski, M.J., Kolawa, N.J., Graham, R.L., Hess, S., Chan, D.C., 2011. Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy. Human Molecular Genetics 20, 1726-1737.
    Chen, D., Wan, S.B., Yang, H., Yuan, J., Chan, T.H., Dou, Q.P., 2011. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Advances in Clinical Chemistry 53, 155.
    Chen, H., Chomyn, A., Chan, D.C., 2005. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. Journal of Biological Chemistry 280, 26185-26192.
    Cicchini, M., Karantza, V., Xia, B., 2015. Molecular pathways: autophagy in cancer—a matter of timing and context. Clinical Cancer Research 21, 498-504.
    Civiletto, G., Varanita, T., Cerutti, R., Gorletta, T., Barbaro, S., Marchet, S., Lamperti, C., Viscomi, C., Scorrano, L., Zeviani, M., 2015. Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metabolism 21, 845-854.
    Coia, H., Ma, N., Dyba, M., Chung, F.-L., 2017. Lipid-peroxidation derived DNA damage is prevented in obesity-related hepatocarcinogenesis through CD4+ mediated apoptosis in the livers of mice on a green-tea diet. Cancer Research, pp. 2017-1261
    Cruz-Jentoft, A.J., Baeyens, J.P., Bauer, J.M., Boirie, Y., Cederholm, T., Landi, F., Martin, F.C., Michel, J.-P., Rolland, Y., Schneider, S.M., 2010. Sarcopenia: European consensus on definition and diagnosisReport of the European Working Group on Sarcopenia in Older PeopleA. J. Cruz-Gentoft et al. Age and Ageing 39, 412-423.
    Derave, W., Eijnde, B.O., Ramaekers, M., Hespel, P., 2005. No effects of lifelong creatine supplementation on sarcopenia in senescence-accelerated mice (SAMP8). American Journal of Physiology-Endocrinology and Metabolism 289, E272-E277.
    Desgeorges, M.M., Devillard, X., Toutain, J., Divoux, D., Castells, J., Bernaudin, M., Touzani, O., Freyssenet, D.G., 2015. Molecular mechanisms of skeletal muscle atrophy in a mouse model of cerebral ischemia. Stroke 46, 1673-1680.
    Dillon, L.M., Rebelo, A.P., Moraes, C.T., 2012. The role of PGC‐1 coactivators in aging skeletal muscle and heart. IUBMB Life 64, 231-241.
    Ding, W.-X., Ni, H.-M., Gao, W., Yoshimori, T., Stolz, D.B., Ron, D., Yin, X.-M., 2007. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. The American Journal of Pathology 171, 513-524.
    Dorchies, O.M., Wagner, S., Vuadens, O., Waldhauser, K., Buetler, T.M., Kucera, P., Ruegg, U.T., 2006. Green tea extract and its major polyphenol (−)-epigallocatechin gallate improve muscle function in a mouse model for Duchenne muscular dystrophy. American Journal of Physiology-Cell Physiology 290, C616-C625.
    Dulloo, A., Seydoux, J., Girardier, L., Chantre, P., Vandermander, J., 2000. Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. International Journal of Obesity 24, 252.
    Fan, J., Kou, X., Jia, S., Yang, X., Yang, Y., Chen, N., 2016. Autophagy as a potential target for sarcopenia. Journal of Cellular Physiology 231, 1450-1459.
    Fannin, S.W., Lesnefsky, E.J., Slabe, T.J., Hassan, M.O., Hoppel, C.L., 1999. Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Archives of Biochemistry and Biophysics 372, 399-407.
    Farré, J.-C., Subramani, S., 2016. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nature Reviews Molecular Cell Biology 17, 537.
    Ferrington, D.A., Husom, A.D., Thompson, L.V., 2005. Altered proteasome structure, function, and oxidation in aged muscle. The FASEB Journal 19, 644-646.
    Frake, R.A., Ricketts, T., Menzies, F.M., Rubinsztein, D.C., 2015. Autophagy and neurodegeneration. The Journal of Clinical Investigation 125, 65-74.
    Gannon, A.M., Stämpfli, M.R., Foster, W.G., 2013. Cigarette smoke exposure elicits increased autophagy and dysregulation of mitochondrial dynamics in murine granulosa cells. Biology of Reproduction 88, 63, 61-11.
    García-Prat, L., Martínez-Vicente, M., Perdiguero, E., Ortet, L., Rodríguez-Ubreva, J., Rebollo, E., Ruiz-Bonilla, V., Gutarra, S., Ballestar, E., Serrano, A.L., 2016. Autophagy maintains stemness by preventing senescence. Nature 529, 37.
    Graber, T.G., Kim, J.-H., Grange, R.W., McLoon, L.K., Thompson, L.V., 2015a. C57BL/6 life span study: age-related declines in muscle power production and contractile velocity. Age 37, 36.
    Graber, T.G., Kim, J.H., Grange, R.W., McLoon, L.K., Thompson, L.V., 2015b. C57BL/6 life span study: age-related declines in muscle power production and contractile velocity. Age (Dordr) 37, 9773.
    Guillet, C., Prod’homme, M., Balage, M., Gachon, P., Giraudet, C., Morin, L., Grizard, J., Boirie, Y., 2004. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. The FASEB Journal 18, 1586-1587.
    Hadi, S., Bhat, S.H., Azmi, A.S., Hanif, S., Shamim, U., Ullah, M., 2007. Oxidative breakage of cellular DNA by plant polyphenols: a putative mechanism for anticancer properties, Seminars in Cancer Biology. Elsevier, pp. 370-376.
    Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S.-i., Natsume, T., Takehana, K., Yamada, N., 2009. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Molecular Biology of the Cell 20, 1981-1991.
    Huang, Y., Sumida, M., Kumazoe, M., Sugihara, K., Suemasu, Y., Yamada, S., Yamashita, S., Miyakawa, J., Takahashi, T., Tanaka, H., 2017. Oligomer formation of a tea polyphenol, EGCG, on its sensing molecule 67 kDa laminin receptor. Chemical Communications 53, 1941-1944.
    Jung, C.H., Jun, C.B., Ro, S.-H., Kim, Y.-M., Otto, N.M., Cao, J., Kundu, M., Kim, D.-H., 2009. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular Biology of the Cell 20, 1992-2003.
    Jurgens, T.M., Whelan, A.M., Killian, L., Doucette, S., Kirk, S., Foy, E., 2012. Green tea for weight loss and weight maintenance in overweight or obese adults. The Cochrane Database of Systematic Reviews 12.
    Kaur, J., Debnath, J., 2015. Autophagy at the crossroads of catabolism and anabolism. Nature Reviews Molecular Cell Biology 16, 461.
    Kawamata, T., Akiguchi, I., Yagi, H., Irino, M., Sugiyama, H., Akiyama, H., Shimada, A., Takemura, M., Ueno, M., Kitabayashi, T., 1997. Neuropathological studies on strains of senescence-accelerated mice (SAM) with age-related deficits in learning and memory. Experimental Gerontology 32, 161-169.
    Kessler, R.C., Birnbaum, H.G., Shahly, V., Bromet, E., Hwang, I., McLaughlin, K.A., Sampson, N., Andrade, L.H., De Girolamo, G., Demyttenaere, K., 2010. Age differences in the prevalence and co‐morbidity of DSM‐IV major depressive episodes: results from the WHO World Mental Health Survey Initiative. Depression and anxiety 27, 351-364.
    Khurana, N., 2017. Therapeutic potential of epigallocatechin gallate. International Journal of Green Pharmacy (IJGP) 11.
    Koo, S.I., Noh, S.K., 2007. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. The Journal of Nutritional Biochemistry 18, 179-183.
    Kuhn, D.J., Burns, A.C., Kazi, A., Dou, Q.P., 2004. Direct inhibition of the ubiquitin–proteasome pathway by ester bond-containing green tea polyphenols is associated with increased expression of sterol regulatory element-binding protein 2 and LDL receptor. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1682, 1-10.
    Kung, T., Szabó, T., Springer, J., Doehner, W., Anker, S.D., von Haehling, S., 2011. Cachexia in heart disease: highlights from the ESC 2010. Journal of Cachexia, Sarcopenia and Muscle 2, 63-69.
    Liesa, M., Palacín, M., Zorzano, A., 2009. Mitochondrial dynamics in mammalian health and disease. Physiological Reviews 89, 799-845.
    Liu, H.-W., Chan, Y.-C., Wang, M.-F., Wei, C.-C., Chang, S.-J., 2015. Dietary (−)-epigallocatechin-3-gallate supplementation counteracts aging-associated skeletal muscle insulin resistance and fatty liver in senescence-accelerated mouse. Journal of Agricultural and Food Chemistry 63, 8407-8417.
    Liu, H.-W., Chang, S.-J., 2018. Moderate exercise suppresses NF-κB signaling and activates the SIRT1-AMPK-PGC1a axis to attenuate muscle loss in diabetic db/db mice. Frontiers in Physiology 9, 636.
    Mai, S., Klinkenberg, M., Auburger, G., Bereiter-Hahn, J., Jendrach, M., 2010. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J Cell Sci 123, 917-926.
    Maurya, P.K., Rizvi, S.I., 2009. Protective role of tea catechins on erythrocytes subjected to oxidative stress during human aging. Natural Product Research 23, 1072-1079.
    McCroskery, S., Thomas, M., Maxwell, L., Sharma, M., Kambadur, R., 2003. Myostatin negatively regulates satellite cell activation and self-renewal. The Journal of Cell Biology 162, 1135-1147.
    Meador, B., Mirza, K., Tian, M., Skelding, M., Reaves, L., Edens, N., Tisdale, M., Pereira, S., 2015a. The Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCg) Attenuates Skeletal Muscle Atrophy in a Rat Model of Sarcopenia. The Journal of Frailty & Aging 4, 209-215.
    Meador, B.M., Mirza, K.A., Tian, M., Skelding, M.B., Reaves, L.A., Edens, N.K., Tisdale, M.J., Pereira, S.L., 2015b. The Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCg) Attenuates Skeletal Muscle Atrophy in a Rat Model of Sarcopenia. J Frailty Aging 4, 209-215.
    Milone, M., Benarroch, E.E., 2012. Mitochondrial dynamics General concepts and clinical implications. Neurology 78, 1612-1619.
    Miyoshi, N., Pervin, M., Suzuki, T., Unno, K., Isemura, M., Nakamura, M., 2015. Green tea Catechins for well being and therapy: prospects and opportunities. Biologics: Targets and Therapy 5, 85-96.
    Murton, A., Constantin, D., Greenhaff, P., 2008. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1782, 730-743.
    Nam, S., Smith, D.M., Dou, Q.P., 2001. Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. Journal of Biological Chemistry 276, 13322-13330.
    Organization, W.H., 2010. World health statistics 2010. World Health Organization.
    Pallàs, M., 2012. Senescence-Accelerated Mice P8: a tool to study brain aging and Alzheimer's disease in a mouse model. ISRN Cell Biology 2012.
    Pervin, M., Unno, K., Ohishi, T., Tanabe, H., Miyoshi, N., Nakamura, Y., 2018. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules 23, 1297.
    Picca, A., Lezza, A.M.S., Leeuwenburgh, C., Pesce, V., Calvani, R., Landi, F., Bernabei, R., Marzetti, E., 2017. Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. International Journal of Molecular Sciences 18, 933.
    Potenza, M.A., Marasciulo, F.L., Tarquinio, M., Tiravanti, E., Colantuono, G., Federici, A., Kim, J.-a., Quon, M.J., Montagnani, M., 2007. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. American Journal of Physiology-Endocrinology and Metabolism 292, E1378-E1387.
    Potsch, M.S., Tschirner, A., Palus, S., von Haehling, S., Doehner, W., Beadle, J., Coats, A.J., Anker, S.D., Springer, J., 2014. The anabolic catabolic transforming agent (ACTA) espindolol increases muscle mass and decreases fat mass in old rats. J Cachexia Sarcopenia Muscle 5, 149-158.
    Raederstorff, D.G., Schlachter, M.F., Elste, V., Weber, P., 2003. Effect of EGCG on lipid absorption and plasma lipid levels in rats. The Journal of Nutritional Biochemistry 14, 326-332.
    Raha, S., Robinson, B.H., 2000. Mitochondria, oxygen free radicals, disease and ageing. Trends in Biochemical Sciences 25, 502-508.
    Rebbapragada, A., Benchabane, H., Wrana, J., Celeste, A., Attisano, L., 2003. Myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis. Molecular and Cellular Biology 23, 7230-7242.
    Rice, K.M., Linderman, J.K., Kinnard, R.S., Blough, E.R., 2005. The Fischer 344/NNiaHSd X Brown Norway/BiNia is a better model of sarcopenia than the Fischer 344/NNiaHSd: a comparative analysis of muscle mass and contractile properties in aging male rat models. Biogerontology 6, 335-343.
    Sakuma, K., Aoi, W., Yamaguchi, A., 2014. The intriguing regulators of muscle mass in sarcopenia and muscular dystrophy. Frontiers in Aging Neuroscience 6, 230.
    Scarpulla, R.C., 2008. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiological Reviews 88, 611-638.
    Schiaffino, S., Dyar, K.A., Ciciliot, S., Blaauw, B., Sandri, M., 2013. Mechanisms regulating skeletal muscle growth and atrophy. The FEBS Journal 280, 4294-4314.
    Sebastián, D., Palacín, M., Zorzano, A., 2017. Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging. Trends in Molecular Medicine 23, 201-215.
    Sebastián, D., Sorianello, E., Segalés, J., Irazoki, A., Ruiz‐Bonilla, V., Sala, D., Planet, E., Berenguer‐Llergo, A., Muñoz, J.P., Sánchez‐Feutrie, M., 2016. Mfn2 deficiency links age‐related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. The EMBO Journal 35, 1677-1693.
    Shaid, S., Brandts, C., Serve, H., Dikic, I., 2013. Ubiquitination and selective autophagy. Cell Death and Differentiation 20, 21.
    Shankar, S., Ganapathy, S., Hingorani, S.R., Srivastava, R.K., 2008. EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13, 440-452.
    Shen, C.-L., Chyu, M.-C., Yeh, J., Zhang, Y., Pence, B., Felton, C., Brismée, J.-M., Arjmandi, B., Doctolero, S., Wang, J.-S., 2012. Effect of green tea and Tai Chi on bone health in postmenopausal osteopenic women: a 6-month randomized placebo-controlled trial. Osteoporosis International 23, 1541-1552.
    Shibutani, S.T., Saitoh, T., Nowag, H., Münz, C., Yoshimori, T., 2015. Autophagy and autophagy-related proteins in the immune system. Nature Immunology 16, 1014.
    Shixian, Q., VanCrey, B., Shi, J., Kakuda, Y., Jiang, Y., 2006. Green tea extract thermogenesis-induced weight loss by epigallocatechin gallate inhibition of catechol-O-methyltransferase. Journal of Medicinal Food 9, 451-458.
    Singh, R., Ahmed, S., Malemud, C.J., Goldberg, V.M., Haqqi, T.M., 2003. Epigallocatechin-3-gallate selectively inhibits interleukin-1β-induced activation of mitogen activated protein kinase subgroup c-Jun N-terminal kinase in human osteoarthritis chondrocytes. Journal of Orthopaedic Research 21, 102-109.
    Terman, A., Brunk, U.T., 2006. Oxidative stress, accumulation of biological'garbage', and aging. Antioxidants & Redox Signaling 8, 197-204.
    Tezze, C., Romanello, V., Desbats, M.A., Fadini, G.P., Albiero, M., Favaro, G., Ciciliot, S., Soriano, M.E., Morbidoni, V., Cerqua, C., 2017. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metabolism 25, 1374-1389. e1376.
    Tipoe, G.L., Leung, T.-M., Hung, M.-W., Fung, M.-L., 2007. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders) 7, 135-144.
    Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L., Haigh, S.E., Katz, S., Las, G., 2008. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO Journal 27, 433-446.
    Ueda, M., Nishiumi, S., Nagayasu, H., Fukuda, I., Yoshida, K.-i., Ashida, H., 2008. Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle. Biochemical and Biophysical Research Communications 377, 286-290.
    Uekusa, Y., Kamihira-Ishijima, M., Sugimoto, O., Ishii, T., Kumazawa, S., Nakamura, K., Tanji, K.-i., Naito, A., Nakayama, T., 2011. Interaction of epicatechin gallate with phospholipid membranes as revealed by solid-state NMR spectroscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes 1808, 1654-1660.
    van Dijk, M., Nagel, J., Dijk, F.J., Salles, J., Verlaan, S., Walrand, S., van Norren, K., Luiking, Y., 2017. Sarcopenia in older mice is characterized by a decreased anabolic response to a protein meal. Arch Gerontol Geriatr 69, 134-143.
    Vernace, V.A., Schmidt‐Glenewinkel, T., Figueiredo‐Pereira, M.E., 2007. Aging and regulated protein degradation: who has the UPPer hand? Aging Cell 6, 599-606.
    Wallner, C., Jaurich, H., Wagner, J.M., Becerikli, M., Harati, K., Dadras, M., Lehnhardt, M., Behr, B., 2017. Inhibition of GDF8 (Myostatin) accelerates bone regeneration in diabetes mellitus type 2. Scientific Reports 7, 9878.
    Wang, H., Lai, Y.-J., Chan, Y.-L., Li, T.-L., Wu, C.-J., 2011. Epigallocatechin-3-gallate effectively attenuates skeletal muscle atrophy caused by cancer cachexia. Cancer Letters 305, 40-49.
    Wang, H., Wen, Y., Du, Y., Yan, X., Guo, H., Rycroft, J.A., Boon, N., Kovacs, E.M., Mela, D.J., 2010. Effects of catechin enriched green tea on body composition. Obesity 18, 773-779.
    Wang, X., Proud, C.G., 2006. The mTOR pathway in the control of protein synthesis. Physiology 21, 362-369.
    White, Z., White, R.B., McMahon, C., Grounds, M.D., Shavlakadze, T., 2016. High mTORC1 signaling is maintained, while protein degradation pathways are perturbed in old murine skeletal muscles in the fasted state. The International Journal of Biochemistry & Cell Biology 78, 10-21.
    Wierzejska, R., 2014. Tea and health–a review of the current state of knowledge. Przegl Epidemiol 68, 595-599.
    Wohlgemuth, S.E., Seo, A.Y., Marzetti, E., Lees, H.A., Leeuwenburgh, C., 2010. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Experimental Gerontology 45, 138-148.
    Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R.C., 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124.
    Yang, C.S., Wang, X., 2010. Green tea and cancer prevention. Nutrition and Cancer 62, 931-937.
    Yun, G.A., LeunG, K.S., Siu, P.M.F., Qin, J.H., Chow, S.K.H., Qin, L., Li, C.Y., 2015. Muscle mass, structural and functional investigations of senescence-accelerated mouse P8 (SAMP8). Experimental Animals 64, 425-433.
    Zamora, M., A Villena, J., 2014. Targeting mitochondrial biogenesis to treat insulin resistance. Current Pharmaceutical Design 20, 5527-5557.
    Zhang, L., Deng, X., Pan, S., Lai, X., Sun, S., Chen, W., 2017. Research progress on the effect and mechanism of EGCG in the prevention and treatment of diabetes mellitus. Journal of South China Agricultural University 38, 50-55.
    Zhong, Y., Chiou, Y.-S., Pan, M.-H., Shahidi, F., 2012. Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages. Food Chemistry 134, 742-748.
    Zong, H., Ren, J.M., Young, L.H., Pypaert, M., Mu, J., Birnbaum, M.J., Shulman, G.I., 2002. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proceedings of the National Academy of Sciences 99, 15983-15987.
    范光中, 許永河, 2010. 台灣人口高齡化的社經衝擊. 台灣老年醫學暨老年學雜誌 5, 149-168.

    下載圖示 校內:2023-06-29公開
    校外:2023-06-29公開
    QR CODE