| 研究生: |
陳語揚 Chen, Yu-Yang |
|---|---|
| 論文名稱: |
以無載流氣體化學氣相沉積法製備氧化銦奈米線 Fabrication of indium oxide nanowires via chemical vapor deposition without carrier gas |
| 指導教授: |
呂國彰
Lu, Kuo-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 氧化銦 、奈米線 、電阻率 、n型半導體 、透明半導體氧化物 |
| 外文關鍵詞: | CVD, Indium oxide, nanowire, resistivity |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本次研究使用水平爐管,以碳熱還原法進行化學氣相沉積反應,經由氣液固路徑在無載流氣體的條件下合成氧化銦奈米線,本文中對多項生長參數進行改變,觀察生長結果,討論了不同參數對奈米線形貌的影響,最後得到以揮發溫度860 ℃,沉積溫度 540 ℃,壓力6 torr的條件下可形成線徑均勻的奈米線,且生長密度極高;平均線徑在50奈米左右,最長的奈米線可達30微米。XRD以及TEM分析證明了合成的奈米線為單晶氧化銦且晶格排列整齊。PL分析顯示奈米線內可能有一定數量的缺陷,推測可能是較低的生長溫度使得退火能量不夠。電性量測發現氧化銦奈米線的電阻率為1.18 * 10-4 Ω-cm,相較過去的文獻屬於較低的電阻率,可能是奈米線內的缺陷作為非蓄意參雜(Unintentional doping)使載子濃度上升,使電阻率下降。
In this experiment, indium oxide nanowires with high-density and good quality were synthesized via a vapor-liquid-solid chemical vapor deposition (CVD) in a three zone tube furnace. We used indium oxide powder and graphite as the precursor. The synthesized indium oxide nanowires had good morphology with an average diameter of 50 nm and length of over 10 μm. Characterization was conducted with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectrum (PL). HRTEM and XRD studies show that the grown nanowires were indium oxide (c-In2O3) of BCC structure. There was a strong peak around 2.22 eV in the room temperature PL spectrum, which was believed to be originated from the defects in the crystal structure such as oxygen vacancies. The electrical resistivity of a single indium oxide nanowire was measured to be 1.18 * 10-4 Ω-cm, relatively low as compared with other previous works, which might be due to the abundant oxygen vacancies in the nanowires acting as unintentional doping.
1. Cao, H., et al., Room-temperature ultraviolet-emitting In2O3 nanowires. Applied Physics Letters, 2003. 83(4): p. 761-763.
2. Li, C., et al., Diameter-Controlled Growth of Single-Crystalline In2O3 Nanowires and Their Electronic Properties. Advanced Materials, 2003. 15(2): p. 143-146.
3. Singh, N., T. Zhang, and P.S. Lee, The temperature-controlled growth of In2O3nanowires, nanotowers and ultra-long layered nanorods. Nanotechnology, 2009. 20(19): p. 195605.
4. Gali, P., et al., Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires. Semiconductor Science and Technology, 2011. 27(1): p. 015015.
5. Lee, C.-S., et al., Discriminative detection of indoor volatile organic compounds using a sensor array based on pure and Fe-doped In2O3 nanofibers. Sensors and Actuators B: Chemical, 2019. 285: p. 193-200.
6. Bierwagen, O., Indium oxide—a transparent, wide-band gap semiconductor for (opto)electronic applications. Semiconductor Science and Technology, 2015. 30(2): p. 024001.
7. Jo, G., et al., Structural and electrical characterization of intrinsic n-type In2O3 nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313-314: p. 308-311.
8. Wang, G., et al., Synthesis, Characterization, and Optical Properties of In2O3 Semiconductor Nanowires. Inorganic Chemistry, 2007. 46(12): p. 4778-4780.
9. Bourlange, A., et al., Growth of In2O3(100) on Y-stabilized ZrO2(100) by O-plasma assisted molecular beam epitaxy. Applied Physics Letters, 2008. 92(9): p. 092117.
10. Mukherjee, S., et al., Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires. Nanotechnology, 2018. 29(17): p. 175201.
11. Walsh, A., et al., Nature of the Band Gap of In2O3 Revealed by First-Principles Calculations and X-Ray Spectroscopy. Physical Review Letters, 2008. 100(16): p. 167402.
12. Singh, N., et al., Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing. Sensors and Actuators B: Chemical, 2011. 160(1): p. 1346-1351.
13. Park, S., Acetone gas detection using TiO2 nanoparticles functionalized In2O3 nanowires for diagnosis of diabetes. Journal of Alloys and Compounds, 2017. 696: p. 655-662.
14. Mazouchi, M., et al., Photoconduction mechanism of ultra-long indium oxide nanowires. Solid-State Electronics, 2018. 148: p. 58-62.
15. Zhang, D., et al., Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices. Nano Letters, 2004. 4(10): p. 1919-1924.
16. Miller, D.R., S.A. Akbar, and P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 2014. 204: p. 250-272.
17. Wei, Z.P., et al., Ultraviolet light emission and excitonic fine structures in ultrathin single-crystalline indium oxide nanowires. Applied Physics Letters, 2010. 96(3): p. 031902.
18. Meng, M., et al., Ultrahigh quantum efficiency photodetector and ultrafast reversible surface wettability transition of square In2O3 nanowires. Nano Research, 2017. 10(8): p. 2772-2781.
19. Yan, Y., et al., Tunable synthesis of In2O3nanowires, nanoarrows and nanorods. Nanotechnology, 2007. 18(17): p. 175601.
20. Yadav, K., et al., Tuning the Wettability of Indium Oxide Nanowires from Superhydrophobic to Nearly Superhydrophilic: Effect of Oxygen-Related Defects. The Journal of Physical Chemistry C, 2015. 119(28): p. 16026-16032.
21. Okamoto, H. Journal of Phase Equlibria and Diffusion 2004. 25: p. 197.
22. Jean, S.-T. and Y.-C. Her, Growth Mechanism and Photoluminescence Properties of In2O3 Nanotowers. Crystal Growth & Design, 2010. 10(5): p. 2104-2110.
23. Ho, C.-H., et al., Direct Optical Observation of Band-Edge Excitons, Band Gap, and Fermi Level in Degenerate Semiconducting Oxide Nanowires In2O3. The Journal of Physical Chemistry C, 2011. 115(50): p. 25088-25096.
24. Arooj, S., et al., Green emission of indium oxide via hydrogen treatment. RSC Advances, 2018. 8(21): p. 11828-11833.
25. Peng, X.S., et al., Synthesis and photoluminescence of single-crystalline In2O3 nanowires. Journal of Materials Chemistry, 2002. 12(5): p. 1602-1605.
26. Godefroo, S., et al., Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotechnology, 2008. 3: p. 174.
27. Ouacha, H., et al., Controlled synthesis and photoluminescence properties of In2O3 rods with dodecahedron In2O3 microcrystals on top. physica status solidi (a), 2017. 214(10): p. 1700050.
28. Patil, S.P., et al., Spray pyrolyzed indium oxide thick films as NO2 gas sensor. Ceramics International, 2016. 42(14): p. 16160-16168.
29. Gu, W., H. Choi, and K. Kim, Universal approach to accurate resistivity measurement for a single nanowire: Theory and application. Applied Physics Letters, 2006. 89(25): p. 253102.
30. Bierwagen, O. and J.S. Speck, Plasma-assisted molecular beam epitaxy of Sn-doped In2O3: Sn incorporation, structural changes, doping limits, and compensation. physica status solidi (a), 2014. 211(1): p. 48-53.
31. Bierwagen, O. and J.S. Speck, Mg acceptor doping of In2O3 and overcompensation by oxygen vacancies. Applied Physics Letters, 2012. 101(10): p. 102107.
32. Sailer, R.A., et al., Deposition of transparent conductive indium oxide by atmospheric-pressure plasma jet. Surface and Coatings Technology, 2008. 203(5): p. 835-838.
33. Panicker, M., et al., Growth and characterization of indium oxide thin films prepared by spray pyrolysis. Vol. 28. 2005. 1405-1411.
34. Prathap, P., et al., Growth and characterization of indium oxide films. Current Applied Physics, 2008. 8(2): p. 120-127.
校內:2024-08-28公開