簡易檢索 / 詳目顯示

研究生: 王義昕
Wang, Yi-Hsin
論文名稱: 設計與應用微型合金感測器於動態撞擊訊號之量測
The Development of MEMS Alloy Strain Gauge for Impact Signal Measurement
指導教授: 鄭泗滄
Jenq, S.T.
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 119
中文關鍵詞: 一維波傳應力波可撓應變計感測器濺鍍合金微型微機電
外文關鍵詞: LS-DYNA, wave propagation, MEMS, sputter, micro, alloy, sensor, strain gauge, flexible, polyimide, Hopkinson Bar, stress wave
相關次數: 點閱:106下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文利用微機電製程技術先設計製作出一款微型壓阻式合金應變計,其尺寸遠小於現有之市售應變計。接著,再將微型合金應變計設計製作在可撓性薄膜底材表面上,希望可以製作出微型可撓性壓阻式合金應變計。
      
      在製程的選擇上,底材選用4吋的矽晶圓,並沉積氮化矽薄膜作為絕緣層,在其上利用厚膜光阻AZ P4620即可輕易的定義出應變計的外型,再利用磁控濺鍍法(magnetron sputtering)將感測層材料(銅鎳合金)濺鍍在其上,接著以丙銅沖洗作Lift-Off,再將其切割成適當大小,即完成了微型合金應變計的製作。
      
      為了製作出微型可撓性合金應變計,選擇Polyimide9005作為可撓性的基底,欲將微型合金應變計製作在其表面上,卻遭遇到銅鎳合金電阻率過高。本文嘗試各種方法解決此問題,最後發現沉積在Polyimide表面上的銅鎳合金與Polyimide發生反應而氧化的情形,導致其電子傳導的機制改變而影響電阻率,因而使應變計的電阻值過高。最後本文雖然成功的降低應變計的電阻降低,但因其良率過低,不方便應用。
      
      將本文自行設計製作出來的微型合金應變計應用在懸臂樑震動實驗,並與商用應變計做比較,觀測到與商用應變計訊號之趨勢完全相同,因此可以確定微型合金應變計的銅鎳合金有壓阻效果,可以應用於量測結構點的應變。
      
      利用四點彎矩(four point bending)實驗,再搭配使用商用應變計來校正微型合金應變計,以求出其應變計因數(gauge factor)。再將微型合金應變計應用在簡單的懸臂樑靜態載重實驗中以作為驗證,其所量測的應變值與商用應變計做比較,誤差均在9%以內。
      
      最後利用Hopkinson Bar Tester作一維波傳的實驗,將微型合金應變計與商用應變計比較所記錄的應力波波速與大小,並與一維波傳理論及利用商用有限元素軟體LS-DYNA作出的數值模擬分析作比較。實驗結果的應力波波速與應力大小與一維波傳理論比較,其誤差分別均在4%及9%以內。

     In this research, a piezoresistive micro alloy strain gauge that has the size much smaller than commercial strain gauges was designed and manufactured by utilizing Micro Electro Mechanical System (MEMS) followed by developing the micro alloy strain gauge on a flexible thin film as a matrix in order to produce a flexible piezoresistive micro alloy strain gauge.
      
     During the process of manufacturing, the 4-inch silicon wafer was chosen to be the substrate and then deposited a thin film of silicon-nitride as insulated layer. By applying the photoresistance, AZ P4620, on the photolithography technique, the geometry of the micro strain gauge can easily be defined. A thin layer of sensor material, Cu/Ni alloy, was sputtered on top of the silicon wafer by magnetron sputtering followed by lift-off using acetone. Lastly, cut the silicon wafer into proper size to finalize the production of the micro alloy strain gauge.
      
     For manufacturing flexible micro alloy strain gauge, Polyimide9005 was chosen as the flexible matrix. However, while trying to manufacture the micro alloy strain gauge on top of the flexible matrix, the problem that encountered the resistance of Cu/Ni alloy was too high was occurred. In this research, there are several methods had been tried to solve this problem and finally found out that the Cu/Ni alloy layer that deposited on top of the Polyimide layer has the situation of oxidization with Polyimide leading to high resistance due to dreadful electronic transmitting. Consequently, the research has successfully reduced the resistance of the flexible strain gauge, the quality of the strain gauge, however, is too low to apply on experiments.
      
     Applying the micro alloy strain gauge developed in this investigation on vibrating experiment of cantilever beam and comparing with commercial strain gauge, the result shows the same signal trend as the commercial stain gauge, therefore, it is for sure that the Cu/Ni alloy of micro alloy strain gauge has piezoresistive effect and can be utilized on measuring the strain of a structure.
      
     Four-point-bending experiment was used to calibrate the micro alloy strain gauge with commercial strain gauge to determine the gauge factor of micro alloy strain gauge and examined by applying the micro alloy strain gauge on static loading experiment of cantilever beam. Comparing the result with commercial strain gauge, the percentage error is within 9%.
     
     Finally, Hopkinson Bar Tester was used to do the one-dimensional wave propagation experiment to test the ability of catching the dynamic signal of micro alloy strain gauge. Both micro alloy strain gauges and commercial strain gauge were attached on the Hopkinson Bar Tester and the velocity and intensity of stress wave were recorded then compared with one-dimensional wave propagation theory and the numerical simulation by commercial software LS-DYNA. The percentage error of velocity and stress are within 4% and 9% respectively.

    簽名頁 授權書 誌    謝 全文中文摘要 全文英文摘要 目錄..........................................Ⅰ 表目錄........................................Ⅲ 圖目錄........................................Ⅳ 第一章 緒論 1-1  研究動機................................1 1-2  文獻回顧................................2 1-3  研究方法................................3 第二章 微型合金應變計設計與製作 2-1  前言....................................5 2-2  微型合金應變計設計......................6 2-3  微型合金應變計製作.....................15 2-4  製作結果討論...........................19 2-5  成本分析...............................21 第三章 微型可撓性應變計設計、製作與討論 3-1  前言...................................37 3-2  微型可撓性應變計設計...................38 3-3  微型可撓性應變計製作...................45 3-4  微型可撓性應變計討論...................47   3-4-1  定義圖形問題.....................48   3-4-2  電阻值過高問題...................51   3-4-3  蒸鍍比較.........................56 3-5  感測層合金晶格之探討...................57 3-6  建議...................................59 第四章 微型合金應變計的校正與驗證 4-1  前言...................................77 4-2  四點彎矩實驗理論與步驟.................78   4-2-1  四點彎矩實驗說明.................78   4-2-2  四點彎矩實驗步驟.................79 4-3  四點彎矩實驗結果與校正.................81 4-4  懸臂樑載重實驗驗證.....................83 第五章 微型合金應變計的動態實驗與模擬分析 5-1  前言...................................91 5-2  一維波傳理論...........................92   5-2-1  一維波動方程式...................92   5-2-2  縱向應力波的強度(應力波大小).....94   5-2-3  材質及截面積相同的桿件之軸向碰撞.95   5-2-4  材質及截面積不同的桿件之軸向碰撞.97 5-3  一維波傳實驗與結果討論.................98   5-3-1  Hopkinson Bar Tester的波散效應.98   5-3-2  一維波傳實驗....................100   5-3-3  實驗結果與討論..................101 5-4  LS-DYNA模擬分析結果討論...............103 第六章 結語.................................114 參考文獻.....................................116 自述.........................................120

    [1] J. Gouault, M. Hubin, G. Richon and B. Eudeline, The electromechanical behavior of a full component (dielectric and Cu/Ni constantan alloy) or thin film strain gauge deposited upon steel-substrate, Vacuum, 27 (1977) 363-365.

    [2] K. Rajanna and S. Mohan, Studies on meandering path thin-film strain gauge, Sensors and Actuators, 15 (1988) 297-303. 

    [3] A. Garcia-Alonso, J. Garcia, E. Castano, I. Obieta, and F.J. Gracia, Strain sensitivity and temperature influence on sputtered thin films for piezoresistive sensors, Sensors and Actuators A, 37-38 (1993) 784-789.

    [4] K. Rajanna and S. Mohan, Longitudinal and transverse strain sensitivity of gold film, Journal of Materials Science Letters, 6 (1987) 1027-1029.

    [5] K. Rajanna and S. Mohan, Strain-sensitive property of vacuum evaporated manganese films, Thin Solid Films, 172 (1989) 45-50.

    [6] S. Sampath and K.V. Ramanaiah, Behavior of Bi-Sb alloy thin films as strain gauges, Thin Solid Films, 137 (1986) 199-205.

    [7] J. Rolke, Nichrome thin film technology and its application, Electrocomponent Science and Technology, 1981, Vol. 9, pp. 51-57.

    [8] E. Obermeier and P. Kopystynski, Polysilicon as a material for microsensor applications, Sensors and Actuators A. 30 (1992) 149-155. 

    [9] V.A. Gridchin, V.M. Lubimsky and M.P. Sarina, Piezoresistive properties of polysilicon films, Sensors and Actuators A, 49 (1995) 67-72.

    [10] S.C. Bromley, L.L. Howell and B.D. Jensen, Determination of maximum allowable strain for polysilicon micro-devices, Engineering Failure Analysis, 6 (1999) 27-41.

    [11] V.A. Gridchin, V.M. Lubimsky and M.P. Sarina, Polysilicon strain-gauge transducers, Sensors and Actuators A, 30 (1992) 219-223.

    [12] Y.Z. Su, “Design and fabrication of an instrumented mini-impact system”, Master’s thesis, National Cheng Kung University, Tainan, Taiwan, 2002.

    [13] 呂宗行,國立成功大學 航空太空工程研究所,微機電系統概論上課講義,第六章,第三章,2003年。

    [14] William D. Callister, Jr., Materials Science And Engineering An Introduction, John Wiley & Sons, Inc., New York, pp.789~816, 2000.

    [15] Julian W.Gardner, Microsensors Principles And Applications, John Wiley & Sons, Chichester, pp.69, 1994.

    [16] Marc Madou, Fundamentals of Microfabrication, CRC Press, LLC, Boca Raton, Florida, pp109-113, 1997.

    [17] 黃鐘加、余志成,”RIE蝕刻矽與氮化矽之參數分析”,南區微機電中心機台操作參數設定專題成果報告,民國九十二年四月。

    [18] “The AZ P4000-Sreies resists for plating and recording head applications” ,Clariant (Japan) K.K. BU-electronic Materials.

    [19] James W. Dally, William F. Riley, Experimental Stress Analysis, McGraw-Hill companies, Inc., Boston, pp164-173, 1999.

    [20] 陸志鴻,電工材料,國立編譯館,台北市,第五章,民國61年。

    [21] 許正道,電工材料,超級科技圖書股份有限公司,台北市,民國78年。

    [22] 林光隆,國立成功大學 材料科學及工程學系,材料表面工程講義,第七章,2001。

    [23] 黃慶連、吳宜民,電工學,興業圖書股份有限公司,台南市,民國64年。

    [24] ”Polyimide brochure”, Arch Chemicals Inc.,2003.

    [25] Aqueous Buffer Coat, “Durimide 9005”, Arch Chemicals Inc.,2003. (Durimide is a registered trademark of Arch Chemicals Inc.)

    [26] J.H. Liu, “Piezoresistance study of magnetic and non-magnetic metal films”, M.S. Thesis, National Taiwan Ocean University, Keelung, Taiwan, 2002.

    [27] 曲喜新,過璧君,薄膜物理,電子工業出版社,北京,pp.55-65,1994.

    [28] C. Girardeaux, E. Druet, P. Demoncy, M. Delamar, The polyimide (PMDA-ODA) itianium interface. Part 2. XPS study of polyimide treatments and ageing, Journal of Electron Spectroscope and Related Phenomena, 74 (1995) 57-66.

    [29] S.lwamori, T. Miyashita, S. Fukuta, S. Nozaki, K. Sudoh, and N. Fukuda, Effect of an interfacial layer on adhesion strength deterioration between a copper thin film and polyimide substrates, Vacuum, Vol 51, Number 4 (1998) 615-618.

    [30] International Centre for Diffraction Data © 2005.

    [31] L.H. Van Vlack, Elements of Materials Science and Engineering, 6th Edition, Addison-Wesley, 1989. 

    [32] M.J. Lian, “The characteristic studies of metal films deposited on polyimide by magnetron RF sputtering techniques”, M.S. thesis, National Chung Kung University, Tainan, Taiwan, 2002. 

    [33] C.M. Yang, “Characterization of sputtered ZrN diffusion barrier”, M.S. thesis, National Sun Yat-sen University, Kaohsiung, Taiwan, 2000.

    [34] J.M. Gere, Mechanics of Materials, 5th Edition, Brooks/Cole, Pacific Grove, CA. 2001. 

    [35] W. Johnson, Impact Strength of Material, Edward Arnold 1972.

    [36] K.F. Graff, Wave Motion in Elastic Solids, Dover Publications, INC., New York 1991.

    [37] H. Kolsky, Stress Waves in Solids, Dover Publications, INC., New York 1963.

    [38] J.A. Zukas, T. Nicholas, H.F. Swift, L.B. Greszczuk, D.R. Curran, Impact Dynamics, John Wiley & Sons, Inc. 1982.

    [39]  A. E. H. Love, “A Treatise on the Mathematical Theory of Elasticity,” Dover Publications, 1944.

    下載圖示 校內:2006-08-29公開
    校外:2007-08-29公開
    QR CODE