簡易檢索 / 詳目顯示

研究生: 洪洪
Hung, Hung
論文名稱: 以有機金屬化學汽相磊晶法成長之氮化鎵系列發光二極體光電特性之研究
The optoelectronic characteristics study of nitride based MQW LEDs grown using MOCVD techniques
指導教授: 陳進祥
Chen, Chin-Hsian
蘇炎坤
Su, Yan-Kuin
張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 73
中文關鍵詞: 多重量子井發光二極體
外文關鍵詞: LED, MOCVD, MQW
相關次數: 點閱:63下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,我們使用有機金屬化學汽相磊加法(MOCVD)成長氮化鎵系列發光二極體並探討其光電特性。
      在實驗中,我們以MEDICI作半導體特性模擬,並將之與實驗數據作分析驗證。另外我們調變了量子井中能障(barrier)與井(well)的厚度、多重量子井的數目及能障中不同摻雜位置與濃度,發現在我們的結構中,由於電子電洞不同的遷移率造成能障厚度在215Å時為最佳值。而愈窄的量子井將有較好的量子侷限效果,且其主導了發光二極體的發光光譜。再者,不同的能障摻雜位置也會影響發光二極體的VF2,而若增加摻雜的濃度,由於摻雜的載子可以填補晶體中的缺陷,所以可以加強晶體的晶質。
      最後,分別討論氧化銦錫導電層的厚度及回火溫度,發現在此種沈積情形下,以450°C、1800Å厚時為最佳條件。
      本論文中,我們詳細的研究了量子井特性對發光二極體的影響,並且成功的驗證模擬的結果,在研製發光二極體上將有更好的結果。

    In this thesis, the properties and characteristics investigation of nitride based multiple quantum wells light emitting diodes which had been fabricated by metal organic chemical vapor deposition were demonstrated.
    The simulation results using “MEDICI” of different barrier doping location and concentration were compared with experimental results. Furthermore, the parameters of quantum well such as barrier and well thickness and barrier doping condition were confirmed using x-ray diffraction, photoluminescence and electroluminescence. From the experiments, different doping location changes the forward voltage at 20mA (i.e. VF2) of LEDs. Then, barrier thickness of 215Å is determined with the best quantity in this structure due to better electron-hole recombination mechanism. Besides, the narrower well thickness shows better quantum confinement then contributes to LED luminescence. The well thickness is dominant in energy transition; hence different well thickness changes emitted light of LED. In addition, higher barrier doping concentration can lead to better crystal quality owing to the doped silicon make up for the defects.
    Further, the highest transparency of ITO film was obtained with 450°C annealing temperature and 1800 Å thickness separately.
    In summary, the studies of quantum well doping, thickness and pair were demonstrated to verify their characteristics, and simulations also show a considerable tool to design and determine to characteristic of optical devices.

    Contents page 中文摘要 I Abstract II 誌謝 III Contents VII Figure Captions VIII Table Captions IX Chapter 1 Introduction 1 1.1 The background of GaN-Based LEDs 1 1.1.1 Crystal Structure 1 1.1.2 Band Structure 2 1.2 Optical and Physical Properties of GaN 4 1.3 Electrical Properties of GaN 5 Chapter 2 Physics of Quantum Well and Light Emitting Diodes 12 2.1.1 Density of States of Quantum Well 13 2.1.2 Optical Properties of Quantum Well 14 2.2 Light Emitting Diodes 15 2.2.1 Basics of LEDs 15 2.2.2 I-V Characteristics 16 2.3.3 Emission Spectra 17 Chapter 3 Crystal Growth and MOCVD 22 3.1 Metal–Organic Chemical Vapor Deposition of III-nitride 24 3.2 Design of MOCVD Reactor 25 3.3 Real-Time Monitoring of Epitaxial Growth 25 Chapter 4 Experiments 33 4.1 Simulation Results 34 4.2 Experimental results 37 4.2.1 Different Position of Doped Barrier 37 4.2.2 Different Barrier-Doping Concentration 38 4.2.3 Different Thickness of Barriers and Last barrier 38 4.2.4 Influence of Different Well Thickness 40 4.2.5 Different Pairs of MQWs 42 4.3 Performance of LED with Indium-Tin Oxide 42 Chapter 5 Conclusion 66 Chapter 6 Future Works 68 References 69

    [1] C. P. Kou, R. M. Flecther, T. D. Ostenowski, M. C. Lardizabal, . G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes”, Appl. Phys. Lett., vol. 57, p. 2937, 1990.

    [2] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes”, Appl. Phys. Lett., vol. 58, p. 1010, 1991.

    [3] D. Dingle, K. L. Shaklee, R. F. Leheny, and R. B. Zetterstrom, “Room-temperature violet stimulated emission from optically pumped AlGaN/GaInN double heterostructure”, Appl. Phys. Lett., vol. 64, p. 1377, 1974.

    [4] I. Akasaki and A. Amano, “Optical properties of tensile-strained wurtzite GaN epitaxial layers”, Appl. Phys. Lett., 70, p 2085, 1997

    [5] I. Akasaki and H. Amano, Tech. Dig. Int. Electron Devices Meet, 1996

    [6] S. Keller, B. Keller, D. Kapolnek, H. Masui, U. K. Mishra, and S. P. DenBaars, “Growth of InGaN/GaN double heterostructure LEDs grown at atmospheric pressure,” in Proceedings of Topical Workshop on III–V Nitrides, I. Akasaki and K. Onabe, Eds. Amsterdam, The Netherlands: Elsevier, pp. 49–52, 1997..
    [7] S. Nakamura and G. Fasol, “The Blue Laser Diodes”,Springer, Heidelberg, 1997.
    [8] I. Petrov, E. Mojab, R. C. Powell, J. E. Greene et al., “Synthesis of metastable epitaxial zinc-blende-structure AlN by solid-state reaction”, Appl. Phys. Lett., vol. 60, pp. 2491–2493, 1992.

    [9] H. Amano, T. Asahi, and I. Akasaki, “” Jpn. J. Appl. Phys., Part 2 29, L 205, 1990

    [10] T. Deguchi et al. , “Structural and vibrational properties of GaN”, ,J. Appl. Phys. Vol.86, p 1860 ,1999
    [11] G. D. Chen, M. Smith, J. Y. Lin, H. X. Jiang, S.-H. Wei, M. A. Khan, and C. J. Sun, “Fundamental optical transitions in GaN”, Appl. Phys. Lett. vol. 68, 2784 , 1996.

    [12] K. Pinardi, U. Jain, S. C. Jain, H. E. Maes, R. Van Overstraeten, and M. Willander, “Critical thickness and strain relaxation in lattice mismatched II–VI semiconductor layers”, J. Appl. Phys. vol. 83, 4724 , 1998.

    [13] S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 2 30, p1708 , 1991.

    [14] S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys., Part 1 31, 2883 , 1992.

    [15] A. G. Milines and D. L. Feucht, “Heterojunctions and Metal-Semiconductor Junctions”, Academic Press, New York, 1972.

    [16] H.Iwamura, H.Kobayashi, and H. Okamoto, , Jpn. J. Appl. Phys., 23,L795, 1984.

    [17] C. H. Henry, R. A. Logan, and F. R. Merritt, “Origin of n 2 injection current in AlxGa1–xAs heterojunctions”, Appl. Phys. Lett., 31,454, 1977.

    [18] G. Leistiko Jr. and C. A. Bittman, Solid State Electron., 16, 1321, 1973.

    [19] M. yano, H. Nishi, and M. Tkusagawa, “Temperature characteristics of threshold current in InGaAsP/InP double-heterostructure lasers” J. Appl. Phys., 51, 4022,1980.

    [20] D. Walker, X. Zhang, A. Saxler, P. Kung, and M. Razeghi, “AlxGa1 – xN (0 x 1) ultraviolet photodetectors grown on sapphire by metal-organic chemical-vapor deposition”, Appl. Phys. Lett. 70, 949,1997

    [21] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett., vol. 64, pp. 1687–1689, Mar. 1994.

    [22] S. Nakamura, “High-Power, Long-Lifetime InGaN/GaN/AlGaN-Based Laser Diodes Grown on Pure GaN Substrates” Jpn. J. Appl. Phys., Part 1 30, 1620 , 1991.

    [23] M. Mesrine, N. Grandjean, and J. Massies, “Efficiency of NH3 as nitrogen source for GaN molecular beam epitaxy”, Appl. Phys. Lett. 72, 350, 1998.

    [24] D. A. Neamen, “Semiconductor Physics & Devices: Basic Principles”, Irwin Book Team, 1997.

    [25] M. P. Mack, A. C. abare, P. Kozodoy, M. Hanson, S. Keller, U.k. Mishra, L. A. Codren and S.p. DenBaars, IEEE, 1998.

    [26] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts” , IEEE Photon. Technol. Lett., vol. 13, pp. 848-850, 2001.

    [27] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu, and I. C. Lin, “Vertical High Quality Mirrorlike Facet of GaN-Based Device by Reactive Ion Etching”, Jpn. J. Appl. Phys., vol.40, pp.2762-2764, 2001

    [28] 洪洪, 陳進祥, 蘇炎坤, 張守進1), 陳珀璋, 邱裕中, 周宜德, 黃柏仁, “High Indium Content InGaN/GaN Multiple Quantum Well Yellowish Green Light Emitting Diodes”, Optics and Photonics Taiwan,2002.

    [29] S. P. DENBAARS ,et al. “Gallium-Nitride-Based Materials for Blue to Ultraviolet Optoelectronics Devices’’, Proceeding of the IEEE, vol. 85, no. 11, 1997

    [30] S. C. Jain, M. Willander, J. Narayan and R. Van Overstraeten. “III–nitrides: Growth, characterization, and properties”, J. Appl. Phys. vol. 87, 2000

    [31] M. Fukuda. “Optical Semiconductor Devices”, Wiley Interscience, pp.30-90, 1999.

    下載圖示 校內:2006-07-09公開
    校外:2007-07-09公開
    QR CODE