| 研究生: |
張凱淳 Chang, Kai-Chun |
|---|---|
| 論文名稱: |
實現能排程多條網路通道封包資料的3DES-CBC管線化電路 Implementation of Pipelined 3DES-CBC Circuit for Enabling the Scheduling of Multiple Channels |
| 指導教授: |
卿文龍
Chin, Wen-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 三重資料加密標準 、密碼區塊鏈結 、資料排程 、硬體設計 、管線化設計 |
| 外文關鍵詞: | Triple data encryption algorithm, CBC, data scheduling, pipelined design, hardware architecture |
| 相關次數: | 點閱:91 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
資料加密標準(Data Encryption Standard, DES)演算法,為一種對稱型金鑰加密演算法,由美國國家標準與技術研究院(NIST)於1976年訂定為資料處理標準,由於DES本身的金鑰長度過低容易被破解,日後因此衍生出三重資料加密演算法(3DES),透過增加金鑰長度來避免被輕易的破解。近年來,無線通訊技術發展的越來越完善,在許多不同的應用層面應用中,不只資料傳輸速率越來越高,資料安全也有一定的重要性,要在高資料傳輸速率的情況下仍將每筆資料安全加密,是現今面臨的挑戰。因此,如何實現兼具低成本與高資料傳輸速率的3DES-CBC硬體電路,為本篇論文的研究目標。
一般針對網際網路安全協定(IPsec)網路封包加密的硬體電路,使用3DES-CBC的架構,大多數一次只能夠對單一網路通道(network channel)單一封包裡的資料進行加密。然而,在這些電路架構中,使用來提升電路加密速率的方法有限,整體電路的加密速率提升的程度也非常有限,若是直接用管線化架構來提升電路速率,反而會受到封包加密資料前後相依性(dependency)的影響,造成硬體資源的浪費。
在本篇論文中,為了提高整體電路加解密過程的速率,利用能夠同時加密多個網路通道的封包資料,或者是同時加密單一網路通道不同封包資料的方法,錯開加密資料的前後相依性,並且將演算法架構分層管線化,將3DES-CBC演算法內部的置換盒(S-Box),依據其原理以及計算過後的延遲,在其中安插相對的暫存器,使得整體電路能達到更快的時脈頻率,資料產生速率也能因此增加。本篇論文實現於ASIC與 Xilinx 系列的FPGA上,並與文獻探討時脈頻率、面積、資料產生速率和面積使用效率這四項數據。
To implement a high performance circuit for encrypting network channel packet, this paper proposes a method to schedule the packet data and different pipelined 3DES-CBC architectures. Use the scheduling of different packet data of multiple network channels to remove the dependency of encrypted data. Control the sequence of channel packet to allocate the hardware resources of pipelined 3DES-CBC circuit to each channel. We also divide the critical path of S-Box into several paths which are balanced to make pipelined architecture have higher clock frequency and throughput. Using the proposed architecture, a throughput of 44.75 Gbps for 3DES-CBC pipelined circuit can be achieved in ASIC TSMC 130nm process. According to the FPGA implementation result, the throughput of design can reach 20.11 Gbps on Virtex-4 XC4VLX25.
[1] Data Encryption Standard, Federal Information Processing Standard (FIPS) 46, National Burean of Standard, 1977.
[2] NIST, “Triple Data Encryption Algorithm Modes of Operation,” ANSI X9.52, 1998.
[3] K. Dichou, V. Tourtchine and F. Rahmoune, "Finding the best FPGA implementation of the DES algorithm to secure smart cards," 2015 4th International Conference on Electrical Engineering (ICEE), 2015, pp. 1-4.
[4] Q. Wang, L. Wu, X. Zhang, X. Li and J. Guo, "Efficient Countermeasures against Fault Attacks for 3DES Crypto Engine in Bank IC Card," 2013 Ninth International Conference on Computational Intelligence and Security, 2013, pp. 729-733.
[5] O. Y. H. Cheung and P. H. W. Leong, "Implementation of an FPGA based accelerator for virtual private networks," 2002 IEEE International Conference on Field-Programmable Technology, 2002.
[6] Pawel Chodowiec, Po Khuon, and Kris Gaj, “Fast implementations of secret-key block ciphers using mixed inner- and outer-round pipelining,” 2001 ACM/SIGDA ninth international symposium on Field programmable gate arrays, New York, NY, USA, 2001, pp. 94-102.
[7] J. G. Pandey, A. Gurawa, H. Nehra and A. Karmakar, "An efficient VLSI architecture for data encryption standard and its FPGA implementation," 2016 International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA), 2016, pp. 1-5.
[8] Young Won Lim, "Efficient 8-cycle DES implementation," Proceedings of Second IEEE Asia Pacific Conference on ASICs, 2000, pp. 175-178.
[9] S. Taherkhani, E. Ever and O. Gemikonakli, "Implementation of Non-Pipelined and Pipelined Data Encryption Standard (DES) Using Xilinx Virtex-6 FPGA Technology," 2010 10th IEEE International Conference on Computer and Information Technology, 2010, pp. 1257-1262.
[10] Zeebaree, Subhi, “DES encryption and decryption algorithm implementation based on FPGA,” Indonesian Journal of Electrical Engineering and Computer Science, 2020
[11] Khan, Fozia & Shams, Rehan & Hasan, Asif & Hasan, Nawaid, “Implementation of Data Encryption Standard (DES) on FPGA,” Journal of Computer Science of Newports Institute of Communications and Economics, 2014.
[12] Karim Moussa Ali Abd El-Latif, Hesham Fathi Ali Hamed, El-Sayed Abd El-Hameed and M. Hasaneen, "Hardware implementation of DES using pipelining concept with time-variable key," 2010 International Conference on Microelectronics, 2010, pp. 423-426.
[13] Oukili, Soufiane & Bri, Seddik,”High throughput FPGA Implementation of Data Encryption Standard with time variable sub-keys,” International Journal of Electrical and Computer Engineering (IJECE), 2016, pp. 298-306.
[14] S. Oukili and S. Bri, "FPGA implementation of Data Encryption Standard using time variable permutations," 2015 27th International Conference on Microelectronics (ICM), 2015, pp. 126-129.
[15] Rosal, Edni & Kumar, Sanjeev, “A Fast FPGA Implementation for Triple DES Encryption Scheme,” Circuits and Systems, 2017, pp. 237-246.
[16] R. Neelam and D. Soni, "FPGA implementation of high speed triple data encryption standard," 2016 International Conference on ICT in Business Industry & Government (ICTBIG), 2016, pp. 1-5.
[17] Ren F., Chen L., Zhang T, “3DES Implementation Based on FPGA,” Emerging Research in Web Information Systems and Mining, Communications in Computer and Information Science, 2011.
[18] Antonios, Fiolitakis & Petrakis, Nikolaos & Margaronis, Panagiotis & Antonidakis, Emmanuel,”Hardware Implementation of Triple-DES Encryption/Decryption Algorithm,” 2006
[19] Sugawara, Takeshi & Homma, Naofumi & Aoki, Takafumi & Satoh, Akashi, “ASIC Performance Comparison for the ISO Standard Block Ciphers,” 2007.
[20] T. Fu and S. Li, "A 3DES ASIC implementation with feedback path in the CBC mode," 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2017, pp. 1-2.
[21] Y. He and S. Li, "A 3DES implementation especially for CBC feedback loop mode," 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017, pp. 1-4.
[22] Satoh A., Morioka S, “Hardware-Focused Performance Comparison for the Standard Block Ciphers AES, Camellia, and Triple-DES,” Information Security, Lecture Notes in Computer Science, 2003.
[23] Chin Mun Wee, P. R. Sutton and N. W. Bergmann, "An FPGA network architecture for accelerating 3DES - CBC," International Conference on Field Programmable Logic and Applications, 2005, pp. 654-657.
[24] C. M. Wee, P. R. Sutton, N. W. Bergmann and J. A. Williams, "VPN Acceleration Using Reconfigurable System-On-Chip Technology," 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2006, pp. 281-282.
[25] Abd-El-Barr, Mostafa, “An Efficient Pipelined Multiplicative Inverse Architecture for the AES Cryptosystem”, International Journal of Information and Electronics Engineering, 2014.
[26] Ta, Anh & Vargas, Danilo, “Towards improvement of SUNA in multiplexers with preliminary results of simple logic gate neuron variation”, Genetic and Evolutionary Computation Conference Companion, 2020, pp. 53-54.
校內:2026-08-25公開