簡易檢索 / 詳目顯示

研究生: 洪聖凱
Hung, Sen-Kai
論文名稱: 不銹鋼銲件沿晶應力腐蝕劣化之雷射表面重熔修補技術研究
The Study of Repair Technique on the IGSCC Degradation of the Stainless Steel Weldment by Laser Surface Melting
指導教授: 李驊登
Lee, Hua-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 82
中文關鍵詞: 沃斯田鐵型不銹鋼雷射表面重熔沿晶應力腐蝕殘留應力雙環動電位再活化測試
外文關鍵詞: Austenite stainless steel, LSM, IGC, Residual stress, DL-EPR, Degree of sensitization
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用Nd:YAG雷射表面重熔技術(LSM),搭配不同的雷射功率、離焦長度和掃描速度等參數,針對304沃斯田鐵系不銹鋼之沿晶腐蝕劣化進行表面改質修復。並藉由電化學雙環動電位再活化測試法、殘留應力測量及微結構分析,以評估探討不同雷射參數對LSM去敏化效果及其殘留應力分佈,進而找出最佳的雷射重熔參數區間。
    實驗結果顯示,經雷射重熔後之區域中,碳化物能固溶回晶粒,進而改善其IGC抵抗性。從微結構的觀察發現,使用能量密度值越低的參數組合,熔融區的結晶就越細,因此肥粒鐵在此區域的析出也減少。另一方面,搭配殘留應力測量可得知,離焦距離越遠,重熔範圍會因雷射光斑的增大而加寬,且因能量密度的下降導致重熔區的深度也越淺,塑性變形的範圍減少進而所產生之殘留應力也越小;最後利用電化學雙環動電位再活化(DL-EPR)測試其敏化程度(Degree of Sensitization),結果顯示,在固定的雷射功率下,掃描速率越高,冷卻速率越快,去敏化的效果就越好。歸納所有實驗數據並分析,雷射重熔參數於雷射掃描速率1200mm/min,離焦-20mm之參數組所得效果最佳。
    重熔參數改變除可影響實際去敏化之效果及範圍外,亦可能因入熱量或溫度梯度的改變,進而產生新的敏化區域或引入較高的重熔殘留應力,故對敏化之304不銹鋼而言,選用適當的雷射表面重熔參數,才能為敏化不鏽鋼進行較快速及最有效的去敏化修復。

    Laser surface melting (LSM) was used to repair the surface layer of sensitized 304 stainless steels. The main concerns in this study were the influence of LSM process parameters on the repairing effect of sensitizatized stainless steels. Electrochemical test and microstructural analysis were used to examine the degree of desensitization. And distribution of residual stress after laser process was studied. LSM process parameters were laser power, defocus length and scanning rate. Optimum condition of process parameters was aim at the effective range of these parameters.
    The experimental results showed that the intergranular corrosion resistance in the remelted area was remarkably improved by the redisolution of carbide into the matrix. The laser spot size increased with the increasing defocus length which led to the formation of a thin and broad melted area. As a consequence, the plastic deformation area was narrowed down and residual stress was reduced. The results of double-loop electrochemical potential reactivation test (DL-EPR) showed that the degree of sensitization (DOS) value was decreased with increasing scanning speed. LSM process with its high cooling rate resulted in considerable suppression of Cr-carbide formation. Summarized from the studying results, process condition with laser scanning rate by 1200mm/min and defocus length of -20mm is proven to have satisfactory repairing effect for desensitization of stainless steel components.

    摘 要 I Abstract II 誌 謝 III 總目錄 IV 表目錄 VI 圖目錄 VII 第一章 前言 1 第二章 文獻回顧 3 第三章 相關理論背景 9 3.1 沃斯田鐵型不銹鋼 9 3.1.1 沃斯田鐵不銹鋼凝固過程 10 3.1.2 沿晶應力腐蝕與敏化現象 14 3.1.3 電化學動電位再活化測試法 17 3.2 雷射製程 20 3.2.1 Keyhole mode & Conduction mode 20 3.2.2雷射表面重熔 21 3.3殘留應力 25 第四章 實驗方法與步驟 27 4.1 實驗流程規劃 27 4.2 實驗材料 29 4.3 素材熱處理試驗 29 4.4實驗參數設計 31 4.5雷射表面重熔 32 4.6 金相微結構觀察 34 4.7 Huey Test 腐蝕試驗 36 4.8 TEM微結構觀察 37 4.9 肥粒鐵含量測量 39 4.10 動電位再活化測試法 40 4.11 殘留應力量測 42 第五章 結果與討論 45 5.1 LSM參數對去敏化能力之影響 45 5.1.1 LSM參數對去敏化範圍之影響 45 5.1.2 LSM參數對熔融微結構之影響 48 5.1.3 LSM去敏化效果 55 5.1.4 TEM 微觀結構觀察 57 5.1.5 LSM參數對肥粒鐵析出之影響 60 5.2 雙環動電位再活化測試 63 5.2.1 LSM去敏化效果 63 5.2.2 LSM參數對DOS值之影響 67 5.3 LSM對殘留應力的影響 70 5.3.1 LSM參數對殘留應力之影響 71 5.4 LSM參數綜合討論 73 第六章 結論 74 第七章 未來研究方向與建議 76 第八章 參考文獻 77

    1. 財團法人國家政策研究基金會, 核能發電之必要性(譯自The Need of Nuclear Power), 國政研究報告, 2000.
    2. 何偉, “核能發電的正當性與必要性”, 台電核能月刊,2007.
    3. 葉宗洸, 余明昇, "國內外沸水式反應器壓力槽內部組件的劣化問題", 核研季刊, Vol.22, pp.49-69, 1997.
    4. V. N. Shah, A. G. Ware, A. M. Porter, “Assessment of Pressurized Water Reactor Control Rod Drive Mechanism Nozzle Cracking”, UREG/CR-6245, October, 1994.
    5. W. Bamford and J. Hall, “A Review of Alloy 600 Cracking in Operating Nuclear Plants: Historical Experience and Future Trends,” the 11th Intl. Conf. On Environmental Degradation of Materials in Nuclear Systems, Stevenson, WA, pp. 1071-1079, 2003.
    6. T. Ishihiara, “Corrosion in Failure and Its Prevention in Light Water Reactor”, Welding International, pp. 209-216, 1983(3).
    7. 梁仲賢, "壓水式核反應器材料的腐蝕與防治對策", 核研季刊, Vol.26, pp.8-12, 1999.
    8. 游章雄, "核電廠管路系統之可靠度分析及預防為護策略研究",國立台灣大學機械工程研究所博士論文, 2002.
    9. R.N. Parkins, “Mechanisms of SCC”, in corrosion, L.L. Shreir, Editor, Newnes-Butterworths, 1976.
    10. Annual Book of ASTM Standards﹐Designation:G 108, p.450, ASTM, Philadelphia, 1994.
    11. Annual Book of JIS Standards, Designation:G0580, p.440, JIS, Tokyo, 1986.

    12. O. V. Akgun & O. T. Inal, “Desensitization of Sensitized 304 Stainless Steel by Laser Surface Melting”, Journal of Materials Science, Vol.27, pp.2147-2153, 1992.

    13. S. Kumar & M. K. Banerjee, “Desensitization of Type 316 Stainless Steel by Laser Surface Melting”, Anti-Corrosion Methods and Materials, Vol.47, No.1, pp.20-25, 2000.

    14. Z. Liu, P. H. Chong, P. Skeldon, P. A. Hilton, J. T. Spencer & B. Quayle, “Fundamental Understanding of The Corrosion Performance of Laser-Melted Metallic Alloys”, Surface & Coatings Technology, Vol.200, pp.5514-5525, 2006.

    15. Y. S. Lim, H. P. Kim, J. H. Han, J. S. Kim, and H. S. Kwon, "Influence of Laser Surface Melting on the Susceptibility to Intergranular Corrosion of Sensitized Alloy 600", Corrosion Science, Vol. 43, pp. 1321-1335, 2001.

    16. J. D. Kim, C. J. Kim, C. M. Chung, "Repair welding of etched tubular component of nuclear power plant by Nd:YAG laser", Journal of Materials Processing Technology, Vol. 114, pp. 51-56, 2001.

    17. G. Bao, S. Iguro, M. Inkyo, K. Shinozaki, Y. Mahara & H. Watanabe, "Repair of Stress Corrosion Cracking in Overlaying of Inconel 182 by Laser Surface Melting", Welding in the World, Vol.49, pp.37-44, 2005.

    18. S. Kumar & M. K. Banerjee, “Desensitization of Type 316 Stainless Steel by Laser Surface Melting”, Anti-Corrosion Methods and Materials, Vol.47, No.1, pp.20-25, 2000.

    19. Z. Liu, P. H. Chong, P. Skeldon, P. A. Hilton, J. T. Spencer & B. Quayle, “Fundamental Understanding of The Corrosion Performance of Laser-Melted Metallic Alloys”, Surface & Coatings Technology, Vol.200, pp.5514-5525, 2006.
    20. 曾秉鈞, “雷射表面重熔參數對SUS 304敏化不銹鋼去敏化之影響”, 國立成功大學機械工程研究所碩士論文, 2009.

    21. R.N. Parkins, “Mechanisms of SCC”, in corrosion, L.L. Shreir, Editor, Newnes-Butterworths, 1976.

    22. Y. S. Lim, J. H. Suh, I. H. Kuk, J. S. Kim, "Microscopic Investigation of Sensitized Ni-Base Alloy 600 after Laser Surface Melting", Metallurgical and Materials Transactions A, Vol. 28A, pp. 1223-1231, 1997.

    23. N. Ohkubo, K. Miyakusu, Y. Uematsu and H. Kimura, “Effect of Alloying Elements on the Mechanical Properties of The Stable Austenitic Stainless steel, ” ISIJ International, vol. 34, no.9, pp.764-772,1994.

    24. “鋼鐵材料設計與應用”, 中國礦冶工程協會, 台灣, 2007.

    25. 李驊登, “鋼鐵材料學”, 國立成功大學機械系課程講義, 2008.

    26. G. K. Allan, “Solidification of Austenitic Stainless Steels,” Ironmaking and Steelmaking, vol.22, no.6, pp.465-477, 1995.

    27. K. Rajasekhar, C. S. Harendranath, R. Raman and S. D. Kulkrani, “Microstructural Evolution during Solidification of Austenitic Stainless Steel Weld Metals: A Color Metallographic and Electron Microprobe Analysis Study,” Materials Characterization, vol. 38, No.2, pp.53-65, Feb. 1997.

    28. John C. Lippold, Damian J. Kotecki, “Welding Metallurgy and Weldability of Stainless Steel ,” Wiley-Interscience , Hoboken, NJ , 2005.
    29. 郭榮卿, "核電廠管路粒間應力腐蝕破裂",核研季刊,Vol.9, pp.67-73, 1991.

    30. S. Liu & J. E. Indacochea, “Metal Handbook”, Vol.1, Property and Selection : Irons, Steels and High-Performance Alloy, pp.603-613, 1989.

    31. W. M. Steen, “Laser Material Processing”, Springer-Verlag, London, 1991.

    32. John C. Ion., “Laser processing of engineering materials :principles, procedure and industrial application.”, Elsevier/Butterworth-Heinemann, Boston, pp.178-187, 2005.

    33. 李孟軒, “GTAW與LBW製程對鎳基690合金對街和之殘留應力研究”, 國立成功大學機械工程研究所碩士論文, 2007.

    34. 曾光宏, “不鏽鋼銲件變形與殘留應力之研究”, 國立交通大學機械工程研究所博士論文, 2001.

    35. S. Yang, Z. J. Wang, H. Kokawa & Y. S. Sato, “Reassessment of the effects of laser surface melting on IGC of SUS 304”, Materials Science and Engineering, Vol.474, pp.112-119, 2008.

    36. R. kaul, S.Mahajan, V. Kain, P.Ganesh, K.Chandra, A.K. Nath and R.C. Prasad, “Laser Surface Treanment for Enhancing Intergranular Corrosion Resistance of AISI Type 304 Stainless Steel”, Corrosion, Vol. 64, No. 10, 2008.
    37. W. M. Steen, “Laser Material Processing”, Springer-Verlag, London, 1991.

    38. AWS, “Residual Stress and Distortion”, Welding Handbook, Ch.7, pp.218~233, 1993

    39. 蔡曜隆, “銲道溫度與應力分析實驗”, 國立交通大學機械工程研究所碩士論文, 2001.

    40. R. A. Lula , “Stainless Steel”, Metals Park, Ohio :American Society for Metals ,1986.

    41. ASTM A262-02a, “Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels”, 2002.

    42. ASTM E837-01, “Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method”, 2002.

    43. S. Kuo, “Welding Metallurgy”, University of Wisconsin, John Wiley& Sons, pp. 129-177, 1987

    44. K. E. Easterling, “Introduction to the Physical Metallurgy of Welding”, Butterworth Heinemann, 1922.

    45. G. Van Boven, W. Chen, R. Rogge, “The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: Petting and cracking occurrence”, Acta Materiala , Vol.55,pp.29-42, 2007.

    無法下載圖示 校內:2015-07-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE