研究生: |
何育倫 Ho, Yu-Lun |
---|---|
論文名稱: |
ChatGPT導入設計流程對認知負荷與設計成果的影響 The Impact of ChatGPT Integration in the Design Process on Cognitive Load and Design Outcomes |
指導教授: |
何俊亨
Ho, Chun-Heng |
學位類別: |
碩士 Master |
系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 155 |
中文關鍵詞: | 生成式人工智慧 、ChatGPT 、認知負荷理論 、NASA-TLX 、設計成果 |
外文關鍵詞: | Generative AI, ChatGPT, Cognitive Load Theory, NASA-TLX, Design Outcomes |
相關次數: | 點閱:23 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著計算處理能力的提升以及對大型數據集的利用,語言模型如ChatGPT、Copilot、Gemini…等的應用日益普及,人工智慧在文本生成、資訊檢索以及創意構思等任務中顯示出極大的潛力。在設計領域中,ChatGPT能夠根據使用者的輸入持續提供多樣化的設計建議,從而擴展問題空間,激發創新想法。儘管如此,過多的建議可能會增加設計師處理大量資訊的負擔,導致認知負荷的增加,連帶影響設計成果。基於這一背景,本研究以雙鑽石流程為基礎,透過NASA-TLX認知負荷量表評估受測者於「發現」、「定義」、「發展」、「交付」四個設計階段所感知的負荷程度,並搭配半結構化訪談深入理解負荷產生的原因與使用者互動的體驗。此外,研究亦邀請六位設計專家,針對受測者的最終設計草圖進行創造力、美學與技術可行性等構面評分,以分析認知負荷與設計成果之間的關聯性。實驗共招募30位具設計背景的大四以上學歷者,分為實驗組(使用ChatGPT與Google)與對照組(僅使用Google)進行外送機器人的設計任務。
研究結果顯示,不管有無ChatGPT的導入,不同設計階段會顯著影響受測者的認知負荷。可整體而言,實驗組與對照組在認知負荷上的差異未達統計顯著水準,顯示ChatGPT並未能顯著降低受測者的認知負荷。質性資料則指出,實驗組部分受測者認為ChatGPT有助於資訊整合與解決方案生成。然若問題定義不清,則易產生冗長或偏離需求的回覆,反而提升心智需求。此外,專家評分的結果亦顯示兩組在創造力、美學、可行性與整體表現上皆無顯著差異,顯示ChatGPT對設計成果的提升效益尚不明確。綜上所述,本研究揭示了ChatGPT在設計中的角色:一方面可協助資訊統整與生成設計解方,另一方面亦可能因資訊過載或回應不精準而彌平認知負荷之差異。透過雙鑽石模型的階段分析,也發現受測者在不同階段對ChatGPT的需求與期待不同,導致認知負荷表現出階段性的差異,彌補了以往僅於任務結束後進行單點評估的研究缺口。
In recent years, with the advancement of computational power and the increasing use of large-scale datasets, language models such as ChatGPT, Copilot, and Gemini have become increasingly prevalent. Artificial intelligence has shown great potential in tasks such as text generation, information retrieval, and creative ideation. In the field of design, ChatGPT can continuously provide diverse design suggestions based on user input, thereby expanding the problem space and inspiring innovative ideas. Nevertheless, excessive suggestions may increase the burden of information processing for designers, leading to a rise in cognitive load, which can, in turn, affect design outcomes.
Against this backdrop, this study adopts the Double Diamond process as a framework and uses the NASA-TLX cognitive load scale to assess participants’ perceived load across the four design phases: Discover, Define, Develop, and Deliver. Semi-structured interviews were conducted to further explore the sources of cognitive load and participants' experiences interacting with the tools. Additionally, six design experts were invited to evaluate the final design sketches of the participants in terms of creativity, aesthetics, and technical feasibility to analyze the relationship between cognitive load and design outcomes.
A total of 30 participants with a design background at the senior undergraduate level or above were recruited and assigned to either an experimental group (using both ChatGPT and Google) or a control group (using only Google) to complete a food delivery robot design task.
The results revealed that, regardless of the use of ChatGPT, different design phases significantly affected participants’ cognitive load. Overall, no statistically significant difference in cognitive load was observed between the experimental and control groups, suggesting that ChatGPT did not significantly reduce cognitive load. However, qualitative data indicated that some participants in the experimental group found ChatGPT helpful for information integration and solution generation. On the other hand, when the problem was poorly defined, ChatGPT tended to produce verbose or off-target responses, increasing mental demand instead. Furthermore, expert evaluations showed no significant difference between the two groups in terms of creativity, aesthetics, technical feasibility, or overall performance, indicating that the effectiveness of ChatGPT in enhancing design outcomes remains inconclusive.
In summary, this study sheds light on the dual role of ChatGPT in design: while it can assist in organizing information and generating solutions, it may also contribute to information overload or imprecise responses, thereby offsetting any reduction in cognitive load. Through phase-specific analysis within the Double Diamond model, the study also found that participants’ needs and expectations for ChatGPT varied across different design stages, leading to stage-based differences in cognitive load. This addresses a gap in previous research, which often relied solely on post-task evaluations.
Alhadreti, O., & Mayhew, P. (2018). Rethinking thinking aloud: A comparison of three think-aloud protocols. Proceedings of the 2018 CHI conference on human factors in computing systems,
Ayoub, N. F., Lee, Y. J., Grimm, D., & Divi, V. (2024). Head‐to‐head comparison of ChatGPT versus Google search for medical knowledge acquisition. Otolaryngology–Head and Neck Surgery, 170(6), 1484-1491.
Ball, L. J., Ormerod, T. C., & Morley, N. J. (2004). Spontaneous analogising in engineering design: a comparative analysis of experts and novices. Design Studies, 25(5), 495-508.
Besemer, S. P., & Treffinger, D. J. (1981). Analysis of creative products: review and synthesis. The Journal of Creative Behavior.
Bilda, Z., & Gero, J. S. (2007). The impact of working memory limitations on the design process during conceptualization. Design Studies, 28(4), 343-367. https://doi.org/https://doi.org/10.1016/j.destud.2007.02.005
Bouschery, S. G., Blazevic, V., & Piller, F. T. (2023). Augmenting human innovation teams with artificial intelligence: Exploring transformer-based language models. Journal of Product Innovation Management, 40(2), 139-153. https://doi.org/https://doi.org/10.1111/jpim.12656
Brünken, R., Steinbacher, S., Plass, J. L., & Leutner, D. (2002). Assessment of cognitive load in multimedia learning using dual-task methodology. Experimental psychology, 49(2), 109.
Caldiroli, C. L., Gasparini, F., Corchs, S., Mangiatordi, A., Garbo, R., Antonietti, A., & Mantovani, F. (2023). Comparing online cognitive load on mobile versus PC-based devices. Personal and Ubiquitous Computing, 27(2), 495-505.
Chandrasekera, T., Hosseini, Z., & Perera, U. (2024). Can artificial intelligence support creativity in early design processes? International Journal of Architectural Computing, 14780771241254637. https://doi.org/10.1177/14780771241254637
Chiou, L.-Y., Hung, P.-K., Liang, R.-H., & Wang, C.-T. (2023). Designing with AI: An exploration of co-ideation with image generators. Proceedings of the 2023 ACM designing interactive systems conference,
Chong, L., Lo, I.-P., Rayan, J., Dow, S., Ahmed, F., & Lykourentzou, I. (2025). Prompting for products: investigating design space exploration strategies for text-to-image generative models. Design Science, 11, e2.
Christiaans, H., & Dorst, K. H. (1992). Cognitive models in industrial design engineering: a protocol study. Design theory and methodology, 42(1), 131-140.
Christiaans, H. H. (2002). Creativity as a design criterion. Communication Research Journal, 14(1), 41-54.
Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological assessment, 6(4), 284.
Cierniak, G., Scheiter, K., & Gerjets, P. (2009). Explaining the split-attention effect: Is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load? Computers in human behavior, 25(2), 315-324. https://doi.org/https://doi.org/10.1016/j.chb.2008.12.020
COTE, P., MOHAMED-AHMED, A., & TREMBLAY, S. (2011). A Quantitative Method to Compare the Impact of Design Media on the Architectural Ideation Process.
Cross, N. (2001). Chapter 5 - Design Cognition: Results from Protocol and other Empirical Studies of Design Activity. In C. M. Eastman, W. M. McCracken, & W. C. Newstetter (Eds.), Design knowing and learning: Cognition in design education (pp. 79-103). Elsevier Science. https://doi.org/https://doi.org/10.1016/B978-008043868-9/50005-X
Dahl, D. W., Chattopadhyay, A., & Gorn, G. J. (2001). The importance of visualisation in concept design. Design Studies, 22(1), 5-26.
Dave, T., Athaluri, S. A., & Singh, S. (2023). ChatGPT in medicine: an overview of its applications, advantages, limitations, future prospects, and ethical considerations. Frontiers in artificial intelligence, 6, 1169595.
De Melo, C. M., Kim, K., Norouzi, N., Bruder, G., & Welch, G. (2020). Reducing cognitive load and improving warfighter problem solving with intelligent virtual assistants. Frontiers in psychology, 11, 554706.
Dorst, K., & Cross, N. (2001). Creativity in the design process: co-evolution of problem–solution. Design Studies, 22(5), 425-437.
Duhaylungsod, A. V., & Chavez, J. V. (2023). ChatGPT and other AI users: Innovative and creative utilitarian value and mindset shift. Journal of Namibian Studies: History Politics Culture, 33, 4367-4378.
Eapen, T., Finkenstadt, D. J., Folk, J., & Venkataswamy, L. (2023). How generative AI can augment human creativity. Harvard Business Review, 101(4).
Else, H. (2023). BY CHATGPT FOOL SCIENTISTS. Nature, 613, 423.
Ericsson, K. A. (2017). Protocol analysis. A companion to cognitive science, 425-432.
Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological review, 87(3), 215.
Firat, M. (2023). How chat GPT can transform autodidactic experiences and open education?
Forman, N., Udvaros, J., & Avornicului, M. S. (2023). ChatGPT: A new study tool shaping the future for high school students. Future, 5(6), 7.
Fu Qiu, Y., Ping Chui, Y., & Helander, M. G. (2008). Cognitive understanding of knowledge processing and modeling in design. Journal of Knowledge Management, 12(2), 156-168.
Galy, E., Paxion, J., & Berthelon, C. (2018). Measuring mental workload with the NASA-TLX needs to examine each dimension rather than relying on the global score: an example with driving. Ergonomics, 61(4), 517-527.
Ghoreishi, M., & Happonen, A. (2020). New promises AI brings into circular economy accelerated product design: a review on supporting literature. E3S web of conferences,
Gong, Z., Paananen, S., Nurmela, P., Gonçalves, M., Georgiev, G. V., & Häkkilä, J. (2024). AI role in ideation for design creativity enhancement. DS 136: Proceedings of the Asia Design and Innovation Conference (ADIC) 2024,
Hart, S. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Human mental workload/Elsevier.
Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. Proceedings of the human factors and ergonomics society annual meeting,
Herm, L.-V. (2023). Impact of explainable ai on cognitive load: Insights from an empirical study. arXiv preprint arXiv:2304.08861.
Hu, X., Tian, Y., Nagato, K., Nakao, M., & Liu, A. (2023). Opportunities and challenges of ChatGPT for design knowledge management. Procedia CIRP, 119, 21-28.
Huang, K.-L., Liu, Y.-C., Dong, M.-Q., & Lu, C.-C. (2024). Integrating AIGC into product design ideation teaching: An empirical study on self-efficacy and learning outcomes. Learning and Instruction, 92, 101929. https://doi.org/https://doi.org/10.1016/j.learninstruc.2024.101929
Hudon, A., Demazure, T., Karran, A., Léger, P.-M., & Sénécal, S. (2021). Explainable artificial intelligence (XAI): how the visualization of AI predictions affects user cognitive load and confidence. Information Systems and Neuroscience: NeuroIS Retreat 2021,
Kalyuga, S. (2011). Cognitive Load Theory: Implications for Affective Computing. FLAIRS,
Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business horizons, 62(1), 15-25.
Karpf, D. A. (1972). Thinking aloud in human discrimination learning. State University of New York at Stony Brook.
Kershaw, T., Holtta-Otto, K., & Lee, Y. S. (2011). The effect of prototyping and critical feedback on fixation in engineering design. Proceedings of the annual meeting of the cognitive science society,
Kshetri, N., Dwivedi, Y. K., Davenport, T. H., & Panteli, N. (2024). Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda. International Journal of Information Management, 75, 102716. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2023.102716
Kvale, S. (1996). InterViews: an introduction to qualitive research interviewing. Sage.
Lyu, Y., Wang, X., Lin, R., & Wu, J. (2022). Communication in Human–AI Co-Creation: Perceptual Analysis of Paintings Generated by Text-to-Image System. Applied Sciences, 12(22), 11312. https://www.mdpi.com/2076-3417/12/22/11312
Meshkati, N. (1988). Toward development of a cohesive model of workload. In Advances in psychology (Vol. 52, pp. 305-314). Elsevier.
Mohamed-Ahmed, A., Bonnardel, N., Côté, P., & Tremblay, S. (2013). Cognitive load management and architectural design outcomes. International Journal of Design Creativity and Innovation, 1(3), 160-176.
Nikulin, C., Lopez, G., Piñonez, E., Gonzalez, L., & Zapata, P. (2019). NASA-TLX for predictability and measurability of instructional design models: case study in design methods. Educational Technology Research and Development, 67, 467-493.
O'Quin, K., & Besemer, S. P. (1989). The development, reliability, and validity of the revised creative product semantic scale. Creativity Research Journal, 2(4), 267-278.
Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive-load approach. Journal of educational psychology, 84(4), 429.
Paas, F. G., & Van Merriënboer, J. J. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational psychology review, 6, 351-371.
Piller, F. T., Nitsch, V., Luettgens, D., Mertens, A., Puetz, S., & Van Dyck, M. (2022). Forecasting next generation manufacturing. Cham: Springer.
Rahsepar, A. A., Tavakoli, N., Kim, G. H. J., Hassani, C., Abtin, F., & Bedayat, A. (2023). How AI responds to common lung cancer questions: ChatGPT versus Google Bard. Radiology, 307(5), e230922.
Ruslin, R., Mashuri, S., Rasak, M. S. A., Alhabsyi, F., & Syam, H. (2022). Semi-structured Interview: A methodological reflection on the development of a qualitative research instrument in educational studies. IOSR Journal of Research & Method in Education (IOSR-JRME), 12(1), 22-29.
Schmidhuber, J., Schlögl, S., & Ploder, C. (2021, 8-10 Sept. 2021). Cognitive Load and Productivity Implications in Human-Chatbot Interaction. 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS),
Schulz, T., & Knierim, M. T. (2024). Cognitive Load Dynamics in Generative AI-Assistance: A NeuroIS Study.
Shah, J. J., Smith, S. M., & Vargas-Hernandez, N. (2003). Metrics for measuring ideation effectiveness. Design Studies, 24(2), 111-134.
Shi, Y., Gao, T., Jiao, X., & Cao, N. (2023). Understanding design collaboration between designers and artificial intelligence: a systematic literature review. Proceedings of the ACM on Human-Computer Interaction, 7(CSCW2), 1-35.
Simon, H. A. (1973). The structure of ill structured problems. Artificial intelligence, 4(3-4), 181-201.
Song, B., Gyory, J. T., Zhang, G., Soria Zurita, N. F., Stump, G., Martin, J., Miller, S., Balon, C., Yukish, M., McComb, C., & Cagan, J. (2022). Decoding the agility of artificial intelligence-assisted human design teams. Design Studies, 79, 101094. https://doi.org/https://doi.org/10.1016/j.destud.2022.101094
Sugiono, S., Widhayanuriyawan, D., & Andriani, D. P. (2017). Investigating the impact of road condition complexity on driving workload based on subjective measurement using NASA TLX. MATEC Web of Conferences,
Sun, G., & Yao, S. (2012). Investigating the relation between cognitive load and creativity in the conceptual design process. Proceedings of the human factors and ergonomics society annual meeting,
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285.
Sweller, J., Ayres, P. L., Kalyuga, S., & Chandler, P. (2003). The expertise reversal effect.
Tang, X., Windham, J., & Bush, B. (2024). Pre-AI and post-AI design: balancing human Creativity and AI Tools in the Industrial Design Process. Proceeding of the 2024 International Conference on Artificial Intelligence and Future Education,
Visser, W. (1990). More or less following a plan during design: opportunistic deviations in specification. International Journal of Man-Machine Studies, 33(3), 247-278. https://doi.org/https://doi.org/10.1016/S0020-7373(05)80119-1
Wadinambiarachchi, S., Kelly, R. M., Pareek, S., Zhou, Q., & Velloso, E. (2024). The effects of generative ai on design fixation and divergent thinking. Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems,
Wang, B., Zuo, H., Cai, Z., Yin, Y., Childs, P., Sun, L., & Chen, L. (2023). A Task-Decomposed AI-Aided Approach for Generative Conceptual Design. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
Wojtczuk, A., & Bonnardel, N. (2011). Designing and assessing everyday objects: Impact of externalisation tools and judges’ backgrounds. Interacting with Computers, 23(4), 337-345.
Woods, D. D., Patterson, E. S., & Roth, E. M. (2002). Can we ever escape from data overload? A cognitive systems diagnosis. Cognition, Technology & Work, 4, 22-36.
Wu, F., Hsiao, S.-W., & Lu, P. (2024). An AIGC-empowered methodology to product color matching design. Displays, 81, 102623. https://doi.org/https://doi.org/10.1016/j.displa.2023.102623
Wu, Y. (2023). Integrating generative AI in education: how ChatGPT brings challenges for future learning and teaching. Journal of Advanced Research in Education, 2(4), 6-10.
Yang, M. C. (2003). Concept generation and sketching: Correlations with design outcome. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
Yin, H., Zhang, Z., & Liu, Y. (2023). The Exploration of Integrating the Midjourney Artificial Intelligence Generated Content Tool into Design Systems to Direct Designers towards Future-Oriented Innovation. Systems, 11(12), 566. https://www.mdpi.com/2079-8954/11/12/566
Youmans, R. J. (2011). The effects of physical prototyping and group work on the reduction of design fixation. Design Studies, 32(2), 115-138. https://doi.org/https://doi.org/10.1016/j.destud.2010.08.001