簡易檢索 / 詳目顯示

研究生: 蔡欣容
Tsai, Hsin-Jung
論文名稱: 超穎材料結合共振腔之聲音穿透與擷能分析
Transmission and Energy Harvesting Analysis of an Acoustic Metamaterial Coupling with a Resonant Cavity
指導教授: 陳蓉珊
Chen, Jung-San
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 73
中文關鍵詞: 亥姆赫茲諧振器超穎材料穿透損失擷能
外文關鍵詞: Acoustic metamaterials, Transmission loss, Energy Harvesting
相關次數: 點閱:61下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 噪音一直是人們日常生活中非常棘手的問題,為了擁有更好的生活品質,因而發展出了各式各樣預防噪音的設計。本研究結合四分之一波長共振腔與中心穿孔且表面附加環形質量之薄膜型超穎材料,設計出一種新型的混合型諧振器,其減噪機制與亥姆赫茲諧振器相似。當聲音在此結構中傳遞時,特定頻率下透射的聲波很少,會發生較大的穿透損失,因而達到降噪的效果。與傳統的四分之一波長共振腔相比,這種新型混合型諧振器減噪的頻率發生在較低頻的位置,並且可產生額外的減噪頻率,透過尺寸設計能調整減噪發生的頻率位置,而孔洞與環形質量的尺寸是影響減噪頻率重要的因素之一。除了減噪外,本研究進一步地將壓電片貼附於無中心孔洞的混合型諧振器之薄膜表面上,使結構能達到同時實現降低噪音與擷取能量的目的。壓電片透過形變產生電壓,因此透過設計與改良結構中的薄膜形超穎材料增加壓電片的變形量,能更有效地將能量轉換為電能輸出。
    本研究使用COMSOL多物理耦合軟體進行模擬分析,透過軟體計算出穿透損失、電壓、電功率以及能量轉換效率之頻率響應圖,針對100Hz到1500Hz頻率範圍討論新型混合型諧振器的降噪與擷能行為。

    Noise has been a very difficult problem to solve in our daily life. In order to have a better quality of life, a variety of noise isolation designs have been developed. In this thesis, a new type of hybrid resonator is presented. This new design consists of a membrane-orifice-ring metamaterial backed by a closed air cavity. The noise reduction mechanism in such a structure is similar to that of a Helmholtz resonator. Compared to conventional quarter-wave resonators, this novel structure can produce an extra transmission loss peak and significantly lower down the peak frequency. Varying the geometric properties of the metamaterial enables to adjust the frequency band where sound is attenuated. In addition to noise reduction, the present study further investigates the energy harvesting capability of the membrane-ring-central-mass structure backed by an air cavity. The piezoelectric patch is attached to the back surface of the membrane surface. At transmission loss peak, the piezoelectric patch deforms and generates electricity. The proposed design can be used for filtering noise as well as harvesting energy.

    中文摘要I Extend AbstractII 誌謝X 目錄XI 表目錄XIII 圖目錄XIV 符號XVII 第一章導論1 1.1研究動機1 1.2文獻回顧2 1.3章節介紹3 第二章基本聲學理論4 2.1波動方程式[17, 18]4 2.1.1狀態方程式4 2.1.2連續方程式5 2.1.3動量方程式6 2.1.4波動方程式7 2.2四分之一波長共振腔[17]9 2.3亥姆赫茲諧振器[17, 19]11 2.4隔音板之聲音傳播[23]13 2.5四支麥克風測量法[24, 25]17 第三章混合型諧振器之模擬分析20 3.1模型設計20 3.2混合型諧振器之模擬方法23 3.2.1COMSOL多物理耦合軟體簡介24 3.2.2邊界條件25 3.2.3四支麥克風量測法與聲功率法26 3.2.4收斂分析27 3.3混合型諧振器之聲音穿透分析30 3.3.1單一混合型諧振器30 3.3.2幾何尺寸之影響35 3.3.3上下對稱之雙混合型諧振器37 第四章混合型諧振器之壓電擷能42 4.1壓電材料之特性與基礎理論[26, 27]42 4.1.1壓電效應42 4.1.2壓電基本理論公式44 4.1.3壓電材料之極化處理46 4.2模型設計46 4.3壓電之模擬方法48 4.3.1邊界條件48 4.3.2收斂分析49 4.4混合型諧振器之壓電擷能分析50 4.4.1薄膜附加環形質量混合型諧振器之壓電擷能50 4.4.2薄膜附加中心質量混合型諧振器之壓電擷能55 4.4.3薄膜附加環形質量與中心質量混合型諧振器之壓電擷能62 第五章結論70 參考文獻72

    [1]H. Von Helmholtz, On the Sensations of Tone as a Physiological Basis for the Theory of Music: Longmans, Green.(1912).
    [2]P. Tang and W. Sirignano, Theory of a generalized Helmholtz resonator. Journal of Sound and Vibration, 26(2), 247-262(1973).
    [3]A. Selamet and I. Lee, Helmholtz resonator with extended neck. The Journal of the Acoustical Society of America, 113(4), 1975-1985(2003).
    [4]A. Selamet, M. Xu, I.J. Lee, and N. Huff, Helmholtz resonator lined with absorbing material. The Journal of the Acoustical Society of America, 117(2), 725-733 (2005).
    [5]S. Griffin, S.A. Lane, and S. Huybrechts, Coupled Helmholtz resonators for acoustic attenuation. Journal of vibration and acoustics, 123(1), 11-17(2001).
    [6]C. Fu, X. Zhang, M. Yang, S. Xiao, and Z. Yang, Hybrid membrane resonators for multiple frequency asymmetric absorption and reflection in large waveguide. Applied Physics Letters, 110(2), 021901(2017).
    [7]C.H. Sohn and J.H. Park, A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators. Aerospace Science and Technology, 15(8), 606-614(2011).
    [8]H. Chen, B.I. Wu, B. Zhang, and J.A. Kong, Electromagnetic wave interactions with a metamaterial cloak. Physical Review Letters, 99(6), 063903(2007).
    [9]J.B. Pendry, A. Holden, W. Stewart, and I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Physical review letters, 76(25), 4773 (1996).
    [10]D.R. Smith, W.J. Padilla, D. Vier, S.C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Physical review letters, 84(18), 4184(2000).
    [11]C.J. Naify, C.M. Chang, G. McKnight, and S. Nutt, Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. Journal of Applied Physics, 108(11), 114905(2010).
    [12]C.J. Naify, C.M. Chang, G. McKnight, and S. Nutt, Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses. Journal of Applied Physics, 110(12), 124903(2011).
    [13]F. Langfeldt, H. Kemsies, W. Gleine, and O. von Estorff, Perforated membrane-type acoustic metamaterials. Physics Letters A, 381(16), 1457-1462(2017).
    [14]S. Gonella, A.C. To, and W.K. Liu, Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. Journal of the Mechanics and Physics of Solids, 57(3), 621-633(2009).
    [15]K. Mikoshiba, J.M. Manimala, and C. Sun, Energy harvesting using an array of multifunctional resonators. Journal of Intelligent Material Systems and Structures, 24(2), 168-179(2013).
    [16]J. Li, X. Zhou, G. Huang, and G. Hu, Acoustic metamaterials capable of both sound insulation and energy harvesting. Smart Materials and Structures, 25(4), 045013 (2016).
    [17]L.E. Kinsler, A.R. Frey, A.B. Coppens, and J.V. Sanders, Fundamentals of acoustics. Fundamentals of Acoustics, 4th Edition, by Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December 1999. 560.(1999).
    [18]白明憲, 聲學理論與應用:主動是噪音控制. 台灣: 全華科技圖書股份有限公司.(1999).
    [19]R.T. Randeberg, Perforated panel absorbers with viscous energy dissipation enhanced by orifice design. (2000).
    [20]U. Ingard, On the theory and design of acoustic resonators. The Journal of the acoustical society of America, 25(6), 1037-1061(1953).
    [21]R. Chanaud, Effects of geometry on the resonance frequency of Helmholtz resonators. Journal of Sound and Vibration, 178(3), 337-348(1994).
    [22]J.F. Allard and G. Daigle, Propagation of sound in porous media: Modeling sound absorbing materials. ASA. (1994).
    [23]C.E. Wilson, Noise control: measurement, analysis, and control of sound and vibration: Krieger.(1994).
    [24]ASTME2611-09, Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method. American Society for Testing and Materials,(2009).
    [25]M.L. Dong, The research on sound transmission loss measuring system of acoustic material. Shanghai Jiao Tong University: Shanghai, China(2008).
    [26]周卓明, 壓電力學. 台灣: 全華科計圖書股份有限公司.(2003).
    [27]吳朗, 電子陶瓷: 壓電陶瓷: 全欣科技圖書.(1994).

    下載圖示 校內:2023-08-16公開
    校外:2023-08-16公開
    QR CODE