| 研究生: |
蔡欣容 Tsai, Hsin-Jung |
|---|---|
| 論文名稱: |
超穎材料結合共振腔之聲音穿透與擷能分析 Transmission and Energy Harvesting Analysis of an Acoustic Metamaterial Coupling with a Resonant Cavity |
| 指導教授: |
陳蓉珊
Chen, Jung-San |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 亥姆赫茲諧振器 、超穎材料 、穿透損失 、擷能 |
| 外文關鍵詞: | Acoustic metamaterials, Transmission loss, Energy Harvesting |
| 相關次數: | 點閱:61 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
噪音一直是人們日常生活中非常棘手的問題,為了擁有更好的生活品質,因而發展出了各式各樣預防噪音的設計。本研究結合四分之一波長共振腔與中心穿孔且表面附加環形質量之薄膜型超穎材料,設計出一種新型的混合型諧振器,其減噪機制與亥姆赫茲諧振器相似。當聲音在此結構中傳遞時,特定頻率下透射的聲波很少,會發生較大的穿透損失,因而達到降噪的效果。與傳統的四分之一波長共振腔相比,這種新型混合型諧振器減噪的頻率發生在較低頻的位置,並且可產生額外的減噪頻率,透過尺寸設計能調整減噪發生的頻率位置,而孔洞與環形質量的尺寸是影響減噪頻率重要的因素之一。除了減噪外,本研究進一步地將壓電片貼附於無中心孔洞的混合型諧振器之薄膜表面上,使結構能達到同時實現降低噪音與擷取能量的目的。壓電片透過形變產生電壓,因此透過設計與改良結構中的薄膜形超穎材料增加壓電片的變形量,能更有效地將能量轉換為電能輸出。
本研究使用COMSOL多物理耦合軟體進行模擬分析,透過軟體計算出穿透損失、電壓、電功率以及能量轉換效率之頻率響應圖,針對100Hz到1500Hz頻率範圍討論新型混合型諧振器的降噪與擷能行為。
Noise has been a very difficult problem to solve in our daily life. In order to have a better quality of life, a variety of noise isolation designs have been developed. In this thesis, a new type of hybrid resonator is presented. This new design consists of a membrane-orifice-ring metamaterial backed by a closed air cavity. The noise reduction mechanism in such a structure is similar to that of a Helmholtz resonator. Compared to conventional quarter-wave resonators, this novel structure can produce an extra transmission loss peak and significantly lower down the peak frequency. Varying the geometric properties of the metamaterial enables to adjust the frequency band where sound is attenuated. In addition to noise reduction, the present study further investigates the energy harvesting capability of the membrane-ring-central-mass structure backed by an air cavity. The piezoelectric patch is attached to the back surface of the membrane surface. At transmission loss peak, the piezoelectric patch deforms and generates electricity. The proposed design can be used for filtering noise as well as harvesting energy.
[1]H. Von Helmholtz, On the Sensations of Tone as a Physiological Basis for the Theory of Music: Longmans, Green.(1912).
[2]P. Tang and W. Sirignano, Theory of a generalized Helmholtz resonator. Journal of Sound and Vibration, 26(2), 247-262(1973).
[3]A. Selamet and I. Lee, Helmholtz resonator with extended neck. The Journal of the Acoustical Society of America, 113(4), 1975-1985(2003).
[4]A. Selamet, M. Xu, I.J. Lee, and N. Huff, Helmholtz resonator lined with absorbing material. The Journal of the Acoustical Society of America, 117(2), 725-733 (2005).
[5]S. Griffin, S.A. Lane, and S. Huybrechts, Coupled Helmholtz resonators for acoustic attenuation. Journal of vibration and acoustics, 123(1), 11-17(2001).
[6]C. Fu, X. Zhang, M. Yang, S. Xiao, and Z. Yang, Hybrid membrane resonators for multiple frequency asymmetric absorption and reflection in large waveguide. Applied Physics Letters, 110(2), 021901(2017).
[7]C.H. Sohn and J.H. Park, A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators. Aerospace Science and Technology, 15(8), 606-614(2011).
[8]H. Chen, B.I. Wu, B. Zhang, and J.A. Kong, Electromagnetic wave interactions with a metamaterial cloak. Physical Review Letters, 99(6), 063903(2007).
[9]J.B. Pendry, A. Holden, W. Stewart, and I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Physical review letters, 76(25), 4773 (1996).
[10]D.R. Smith, W.J. Padilla, D. Vier, S.C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Physical review letters, 84(18), 4184(2000).
[11]C.J. Naify, C.M. Chang, G. McKnight, and S. Nutt, Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. Journal of Applied Physics, 108(11), 114905(2010).
[12]C.J. Naify, C.M. Chang, G. McKnight, and S. Nutt, Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses. Journal of Applied Physics, 110(12), 124903(2011).
[13]F. Langfeldt, H. Kemsies, W. Gleine, and O. von Estorff, Perforated membrane-type acoustic metamaterials. Physics Letters A, 381(16), 1457-1462(2017).
[14]S. Gonella, A.C. To, and W.K. Liu, Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. Journal of the Mechanics and Physics of Solids, 57(3), 621-633(2009).
[15]K. Mikoshiba, J.M. Manimala, and C. Sun, Energy harvesting using an array of multifunctional resonators. Journal of Intelligent Material Systems and Structures, 24(2), 168-179(2013).
[16]J. Li, X. Zhou, G. Huang, and G. Hu, Acoustic metamaterials capable of both sound insulation and energy harvesting. Smart Materials and Structures, 25(4), 045013 (2016).
[17]L.E. Kinsler, A.R. Frey, A.B. Coppens, and J.V. Sanders, Fundamentals of acoustics. Fundamentals of Acoustics, 4th Edition, by Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December 1999. 560.(1999).
[18]白明憲, 聲學理論與應用:主動是噪音控制. 台灣: 全華科技圖書股份有限公司.(1999).
[19]R.T. Randeberg, Perforated panel absorbers with viscous energy dissipation enhanced by orifice design. (2000).
[20]U. Ingard, On the theory and design of acoustic resonators. The Journal of the acoustical society of America, 25(6), 1037-1061(1953).
[21]R. Chanaud, Effects of geometry on the resonance frequency of Helmholtz resonators. Journal of Sound and Vibration, 178(3), 337-348(1994).
[22]J.F. Allard and G. Daigle, Propagation of sound in porous media: Modeling sound absorbing materials. ASA. (1994).
[23]C.E. Wilson, Noise control: measurement, analysis, and control of sound and vibration: Krieger.(1994).
[24]ASTME2611-09, Standard test method for measurement of normal incidence sound transmission of acoustical materials based on the transfer matrix method. American Society for Testing and Materials,(2009).
[25]M.L. Dong, The research on sound transmission loss measuring system of acoustic material. Shanghai Jiao Tong University: Shanghai, China(2008).
[26]周卓明, 壓電力學. 台灣: 全華科計圖書股份有限公司.(2003).
[27]吳朗, 電子陶瓷: 壓電陶瓷: 全欣科技圖書.(1994).