| 研究生: |
吳秉欣 Wu, Ping-Hsin |
|---|---|
| 論文名稱: |
磁控濺鍍氮氧化矽與電漿輔助化學氣相沈積氮化矽薄膜材料機械性質檢測和力學分析及其在微系統之應用 Mechanical Properties Characterization of Magnetron Sputtered Silicon Oxynitride and PECVD Silicon Nitride Thin Films for Microsystem Applications. |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 氮氧化矽薄膜 、氮化矽薄膜 、材料機械性質檢測 、奈米壓痕 、快速熱退火製程 、殘留應力 、破壞韌性 |
| 外文關鍵詞: | silicon oxynitride, silicon nitride, mechanical characterization, RTA, fracture toughness, nanoindentation, residual stress |
| 相關次數: | 點閱:129 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮氧化矽與氮化矽薄膜具有特殊的導通能力(半導體或壓電性質),擁有高介電常數及其有不易被氧化及水氣滲透的特性,氮氧化矽薄膜更具有薄膜內氮氧元素含量比例的可調性,使得此兩種薄膜常被用來作為半導體元件的絕緣層、介電層、蝕刻罩幕以及微系統裝置的結構材料等。然而當使用氮氧化矽和氮化矽薄膜應用在半導體製程或微系統裝置上時,薄膜的機械性質和光學性質會影響到半導體製程的良率或微系統裝置的致動範圍與可靠度,由此可得知薄膜材料性質的掌握扮演著重要的角色。本文將針對磁控濺鍍氮氧化矽與電漿輔助化學氣相沈積氮化矽薄膜的材料性質做一系列的檢測,主要是以壓痕技術為主軸對測試材料做檢測,檢測結果可分為兩個部分,首先是磁控濺鍍氮氧化矽薄膜材料性質的部分,探討在不同氮氧元素含量比例以及不同的熱處理溫度下,氮氧化矽薄膜的彈性模數、硬度、殘留應力、破壞特性、折射率以及吸收光譜波長等性質的變化趨勢;另一部份則是磁控濺鍍和電漿輔助化學氣相沈積系統所沈積的氮化矽薄膜,彈性模數、硬度、殘留應力與破壞韌性在各個熱處理溫度影響下,材料機械性質變化的趨勢並比較兩沈積製程的薄膜材料機械性質有何不同。最後以彈性力學與破壞力學分析以及使用微結構的觀點對檢測結果作討論,探討材料性質的變化趨勢。本文的研究結果相信能提供設計者在設計元件結構的設計依據,同時也利於半導體製程參數最佳化、改善微系統製程的良率以及IC封裝的可靠度。
Silicon oxynitride (SiON) and silicon nitride (Si3N4) films are widely used in semiconductor and microelectromechanical systems (MEMS) applications. SiON films have been reported as a promising material for applications in photonics because of its tunability in optical, electronic and mechanical properties by changing the chemical composition of oxygen and nitrogen. On the other hand, Si3N4 films are typically structural materials for IC passivation layers, device dielectrics, and MEMS structures. Among these applications, material properties, which have seldom been reported yet, play important roles for determining the performance and device longevity. In this thesis, the mechanical behaviors of SiON and Si3N4 films which subjected to rapid thermal annealing process were chaeacterized. The mechanical properties of these films, such as elastic modulus, hardness, residual stress, and fracture toughness, were characterized by nanoindentation and Vickers microindentation techniques. Moreover, the optical properties including refractive index and absorbance infrared spectrum were also characterized by using ellipsometer and FT-IR. For SiON films study, the experimental results indicated that the mechanical and optical properties are strongly influenced by thermal annealing temperature and/or changing the oxygen and nitrogen content. On the other hand, by characterizing nitride films from different deposition processes, it could be found that the elastic modulus, hardness and residual stress properties of magnetron sputtered Si3N4 films have better performances than PECVD Si3N4 films. However, the fracture toughness of PECVD Si3N4 films is much better than magnetron sputtered Si3N4 films. In addition, we discussed the variation tendency of material properties corresponding with microstructural viewpoints and mechanics. The result of the SiON and Si3N4 films characterization can benefit to MEMS community in maintaining structural integrity, structure design, and reliability assessment.
[1] Y. Mo, Y. Okawa, M. Tajima, T. Nakai, N. Yoshiike, and K. Natukawa, "Micro-machined gas sensor array based on metal film micro-heater," Sensors and Actuators B: Chemical, vol. 79, pp. 175-181, 2001.
[2] C. T. Leondes, MEMS/NEMS Handbook Techniques and Applications, Volume 4 Sensors and Actuators, Springer, New York, 2006.
[3] B. Folkmer, P. Steiner, and W. Lang, "A pressure sensor based on a nitride membrane using single-crystalline piezoresistors," Sensors and Actuators A: Physical, vol. 54, pp. 488-492, 1996.
[4] A. M. Moulin, S. J. O'Shea, and M. E. Welland, "Microcantilever-based biosensors," Ultramicroscopy, vol. 82, pp. 23-31, 2000.
[5] C. K. Wong, H. Wong, M. Chan, C. W. Kok, and H. P. Chan, "Fabrication of Optical Waveguide using Silicon Oxynitride Prepared by Thermal Oxidation of Silicon Rich Silicon Nitride," Proceeding of IEEE Conferenc on Electron Devices and Solid-State Circuits, pp. 471-474, 2005.
[6] A. A. Hamzah, B. Y. Majlis, and I. Ahmad, "Fabrication of Platinum Membrane on Silicon for MEMS Microphone," Proceeding of IEEE Conferenc on Semiconductor Electronics, ICSE '06. , pp. 9-13, 2006.
[7] K. Worhoff, R. M. de Ridder, P. V. Lambeck, and A. Driessen, "Silicon oxynitride in integrated optics," Proceeding of IEEE Conferenc on Lasers and Electro-Optics Society Annual Meeting, LEOS '98. , vol.2, pp. 370-371, 1998.
[8] Z. Yang, M. Minyao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, "Optomechanical uncooled infrared imaging system: design, microfabrication, and performance," IEEE Journal of Microelectromechanical Systems , vol. 11, pp. 136-146, 2002.
[9] I. K. Lin, Y. Zhang, and X. Zhang, "The deformation of microcantilever-based infrared detectors during thermal cycling " Journal of Micromechanics and Microengineering, vol. 18, pp. 075012-075020, 2008.
[10] P. G. Datskos, N. V. Lavrik, and S. Rajic, "Performance of uncooled microcantilever thermal detectors," Review of scientific instruments, vol. 75, pp. 1134-1148, 2004.
[11] S. Huang, H. Tao, I. K. Lin, and X. Zhang, "Development of double-cantilever infrared detectors: Fabrication, curvature control and demonstration of thermal detection," Sensors and Actuators A: Physical, vol. 145-146, pp. 231-240, 2007.
[12] I. K. Lin, P. H. Wu, K. S. Ou, K. S. Chen, and Xin Zhang, "The Tunability in Mechanical Properties and Fracture Toughness of Sputtered Silicon Oxynitride Thin Films for MEMS-based Infrared Detectors," Material Research Society Symposium Proceeding, 1222-DD02-20, 2010.
[13] X. Zhang, T. Y. Zhang, M. Wong, and Y. Zohar, "Residual-stress relaxation in polysilicon thin films by high-temperature rapid thermal annealing," Sensors and Actuators A: Physical, vol. 64, pp. 109-115, 1998.
[14] R. K. Pandey, L. S. Patil, J. P. Bange, D. R. Patil, A. M. Mahajan, D. S. Patil, and D. K. Gautam, "Growth and characterization of SiON thin films by using thermal-CVD machine," Optical Materials, vol. 25, pp. 1-7, 2004.
[15] Y. T. Kim, S. M. Cho, Y. G. Seo, H. D. Yoon, Y. M. Im, and D. H. Yoon, "Influence of hydrogen on SiON thick film for silica waveguide deposited by PECVD and annealing effect," Surface and Coatings Technology, vol. 174-175, pp. 204-207, 2003.
[16] J. Dupuis, E. Fourmond, J. F. Lelièvre, D. Ballutaud, and M. Lemiti, "Impact of PECVD SiON stoichiometry and post-annealing on the silicon surface passivation," Thin Solid Films, vol. 516, pp. 6954-6958, 2008.
[17] V. Godinho, V. N. Denisov, B. N. Mavrin, N. N. Novikova, E. A. Vinogradov, V. A. Yakovlev, C. Fernández-Ramos, M. C. J. de Haro, and A. Fernández, "Vibrational spectroscopy characterization of magnetron sputtered silicon oxide and silicon oxynitride films," Applied Surface Science, vol. 256, pp. 156-164, 2009.
[18] Y. Shima, H. Hasuyama, T. Kondoh, Y. Imaoka, T. Watari, K. Baba, and R. Hatada, "Mechanical properties of silicon oxynitride thin films prepared by low energy ion beam assisted deposition," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 148, pp. 599-603, 1999.
[19] P. Temple-Boyer, B. Hajji, J. L. Alay, J. R. Morante, and A. Martinez, "Properties of SiOxNy films deposited by LPCVD from SiH4/N2O/NH3 gaseous mixture," Sensors and Actuators A: Physical, vol. 74, pp. 52-55, 1999.
[20] O. Tabata, K. Kawahata, S. Sugiyama, and I. Igarashi, "Mechanical property measurements of thin films using load-deflection of composite rectangular membrane," Proceeding of IEEE Conference on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots., pp. 152-156,1989.
[21] R. K. Pandey, L. S. Patil, J. P. Bange, and D. K. Gautam, "Growth and characterization of silicon nitride films for optoelectronics applications," Optical Materials, vol. 27, pp. 139-146, 2004.
[22] L. S. Patil, R. K. Pandey, J. P. Bange, S. A. Gaikwad, and D. K. Gautam, "Effect of deposition temperature on the chemical properties of thermally deposited silicon nitride films," Optical Materials, vol. 27, pp. 663-670, 2005.
[23] E. Sánchez-González, P. Miranda, F. Guiberteau, and A. Pajares, "Effect of temperature on the pre-creep mechanical properties of silicon nitride," Journal of the European Ceramic Society, vol. 29, pp. 2635-2641, 2009.
[24] B. Karunagaran, S. J. Chung, S. Velumani, and E. K. Suh, "Effect of rapid thermal annealing on the properties of PECVD SiNx thin films," Materials Chemistry and Physics, vol. 106, pp. 130-133, 2007.
[25] W. T. Li, D. R. McKenzie, W. D. McFall, and Q.-C. Zhang, "Effect of sputtering-gas pressure on properties of silicon nitride films produced by helicon plasma sputtering," Thin Solid Films, vol. 384, pp. 46-52, 2001.
[26] M. Vila, D. Caceres, and C. Prieto, "Mechanical properties of sputtered silicon nitride thin films," Journal of Applied Physics, vol. 94, pp. 7868-7873, 2003.
[27] W. H. Chuang, R. K. Fettig, and R. Ghodssi, "An electrostatic actuator for fatigue testing of low-stress LPCVD silicon nitride thin films," Sensors and Actuators A: Physical, vol. 121, pp. 557-565, 2005.
[28] J. Yang and O. Paul, "Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes," Sensors and Actuators A: Physical, vol. 97-98, pp. 520-526, 2002.
[29] Y. Ren and D. C. C. Lam, "Characterizations of elastic behaviors of silicon nitride thin films with varying thicknesses," Materials Science and Engineering: A, vol. 467, pp. 93-96, 2007.
[30] 陳建元, 電漿輔助化學氣相沉積二氧化矽薄膜之熱應力與破壞分析, 國立成功大學機械工程學系碩士論文, 2001.
[31] 林士淵, 電漿輔助化學氣相沉積二氧化矽薄膜之內應力分析, 國立成功大學機械工程學系碩士論文, 2001.
[32] 顏宏益, 應用奈米壓痕技術於塊狀與薄膜材料之機械性質檢測與分析, 國立成功大學機械工程學系碩士論文, 2007.
[33] A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, "New optimization algorithm for the synthesis of rugate optical coatings," Applied Optics, vol. 45, pp. 1515-1524, 2006.
[34] N. Konofaos, E. K. Evangelou, X. Aslanoglou, M. Kokkoris, and R. Vlastou, "Dielectric properties of CVD grown SiON thin films on Si for MOS microelectronic devices " Semiconductor Science and Technology, vol. 19, pp. 50-53, 2004.
[35] C. M. M. Denisse, K. Z. Troost, J. B. O. Elferink, F. H. P. M. Habraken, W. F. v. d. Weg, and M. Hendriks, "Plasma‐enhanced growth and composition of silicon oxynitride films," Journal of Applied Physics, vol. 60, pp. 2536-2542, 1986.
[36] J. Thurn, R. F. Cook, M. Kamarajugadda, S. P. Bozeman, and L. C. Stearns, "Stress hysteresis and mechanical properties of plasma-enhanced chemical vapor deposited dielectric films," Journal of Applied Physics, vol. 95, pp. 967-976, 2004.
[37] R. W. Johnstone and M. Parameswaran, "Theoretical limits on the freestanding length of cantilevers produced by surface micromachining technology " Journal of Micromechanics and Microengineering, vol. 12, pp. 855-861, 2002.
[38] M. T. K. Hou and R. Chen, "Effect of width on the stress-induced bending of micromachined bilayer cantilevers " Journal of Micromechanics and Microengineering, vol. 13, pp. 141-149, 2003.
[39] K. A. Lohner, Microfabricated Refractory Ceramic Structures for Micro Turbomachinery, S.M. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA., 1999.
[40] 羅吉宗, 薄膜科技與應用, 全華科技圖書股份有限公司, 2004.
[41] G. G. Stoney, "The tension of thin metallic films deposited by electrolysis," Proceedings of the Royal Society, vol. 82, p 172, 1909.
[42] M. Madou, Fundamentals of microfabrication: The science of miniaturization, Boca Raton, FL: CRC Press, 2002.
[43] J. W. Hutchinson and Z. Suo, "Mixed mode cracking in layered materials," Advances in applied mechanics, vol. 29, pp. 63-191, 1991.
[44] K. S. Chen, J. Y. Chen, and S. Y. Lin, "Fracture analysis of thick plasma-enhanced chemical vapor deposited oxide films for improving the structural integrity of power MEMS.," Journal of Micromechanics and Microengineering, vol. 12, pp. 714-722, 2002.
[45] 莊達人, VLSI製程技術, 高立出版社, 2002.
[46] L. Eckertova and T. Ruzicka, Diagnostics and application of thin films, Institute of Phsics Publishing,Philadelphia, 1993.
[47] 白木靖寬、吉田真史, 薄膜工程學, 全華科技圖書股份有限公司, 2004.
[48] K. S. Chen, X. Zhang, and S. Y. Lin, "Intrinsic stress generation and relaxation of plasma-enhanced chemical vapor deposited oxide during deposition and subsequent thermal cycling," Thin Solid Films, vol. 434, pp. 190-202, 2003.
[49] 姜庭隆, 半導體製程, 滄海書局, 2001.
[50] I. N. Sneddon, "The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile," International Journal of Engineering Science, vol. 3, pp. 47-57, 1965.
[51] W.C. Oliver and G. M. Pharr, "Measurement of hardness and elastic modulus by instrumented indentation Advances in understanding and refinements to methodology," Journal of Materials Research, vol. 19, pp. 3-20, 2004.
[52] W. C. Oliver and G. M. Pharr, "An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments," Journal of Materials Research, vol. 7, pp. 1564-1583, 1992.
[53] 陳拓丞, 應用因次分析法於奈米壓痕試驗之理論分析與數值模擬:殘留應力、基材效應與黏彈性質之研究, 國立成功大學機械工程學系碩士論文, 2005.
[54] T. Y. Tsui, W. C. Oliver, and G. M. Pharr, "Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy," Journal of Materials Research, vol. 11, pp. 752-759, 1995.
[55] A. Bolshakov, W. C. Oliver, and G. M. Pharr, "Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations," Journal of Materials Research, vol. 11, pp. 760-768, 1996.
[56] A. C. Fischer-Cripps, Nanoindentation, Springer, New York, 2000.
[57] D. B. Marshall and B. R. Lawn, "Indentation of brittle materials, microindentation techniques in materials science and engineering," ASTM STP 889, pp. 26-46, 1986.
[58] D. S. Harding, W. C. Oliver, and G. M. Pharr, "Cracking During Nanoindentation and Its Use in The Measurement of Fracture Toughness," MRS Bulletin, vol. 356, pp. 663-668, 1995.
[59] T. Y. Zhang, L. Q. Chen, and R. Fu, "Measurements of residual stresses in thin films deposited on silicon wafers by indentation fracture," Acta Materialia, vol. 47, pp. 3869-3878, 1999.
[60] J. Malzbender, G. de With, and J. M. J. den Toonder, "Elastic modulus, indentation pressure and fracture toughness of hybrid coatings on glass," Thin Solid Films, vol. 366, pp. 139-149, 2000.
[61] C. H. Tsau, S. M. Spearing, and M. A. Schmidt, "Fabrication of wafer-level thermocompression bonds," Journal of Microelectronechanical Systems, vol. 11, pp. 641-647, 2002.
[62] J. Zheng, M. Kato, S. Takezoe, and K. Nakasa, "Evaluation of wear resistance of sputtered amorphous SiCN film and measurement of delamination strength of film by micro edge-indent method," Journal of the Society of Materials Science, vol. 54, pp. 1022-1029, 2005.
[63] A. A. Volinsky, N. R. Moody, and W. W. Gerberich, "Interfacial toughness measurements for thin films on substrates," Acta Materialia, vol. 50, pp. 441-466, 2002.
[64] M. F. Doerner and W. D. Nix, "Stresses and deformation processes in thin films on substrates," Critical Reviews in Solid State and Materials Sciences, vol. 14, pp. 225 - 268, 1988.
[65] C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, "Low loss Si3N4-SiO2 optical waveguides on Si," Applied Optics, vol. 26, pp. 2621-2624, 1987.
[66] J. Yota, J. Hander, and A. A. Saleh, "A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 18, pp. 372-376, 2000.
[67] E. Cianci, A. Coppa, and V. Foglietti, "Young's modulus and residual stress of DF PECVD silicon nitride for MEMS free-standing membranes," Microelectronic Engineering, vol. 84, pp. 1296-1299, 2007.
[68] K. S. Chen, Materials Characterization and Structural Design of Ceramic Micro Turbomachinery, Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge , MA, 1999 .
[69] M. Ohring, The Materials of Science of Thin Films, Academic Press, Boston, 1992.
[70] Richard S. Figliola and D. E. Beasley, Theory and Design for Mechanical Measurements, 4th Edition, John Wiley & Sons, New York, 2006.