| 研究生: |
楊淳芳 Yang, Chun-Fang |
|---|---|
| 論文名稱: |
居家式踝關節復健系統之研發 A Home Care Rehabilitation System for Ankle Therapy |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 踝關節 、居家復健系統 、肌電訊號 、中位頻率 |
| 外文關鍵詞: | Ankle joint, home care rehabilitation system, electromyogram, medium frequency |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腦中風是現在常見的疾病,而中風後的症狀經常會造成日常生活上的功能障礙,中風患者需積極的配合治療,才能有效的改善運動功能。目前病人所接受的復健治療,皆是以治療師徒手或配合輔具,來對患者進行一對一的治療訓練,需要相當多的人力及時間,且沒有客觀的評估及數據可以讓患者直接看見成效。因此,本研究目的研發居家式的復健輔助系統,提供患者能夠在家中自主進行復健訓練,減少醫療成本與往返醫院的不便。
本研究在硬體方面利用兩顆AI馬達帶動踏板,完成可提供踝關節進行拉伸及旋轉運動的機構。軟體方面,則利用Visual Studio 2010,編寫人機介面,系統提供兩種訓練模式:主動模式及被動模式。主動模式是由患者自行帶動踏板進行復健運動;被動模式則是在患者無法自行施力時,由馬達驅動帶領患者做復健,並配合肌電訊號感測器,量測作用中肌肉的肌電訊號,進行分析後做疲勞的判定,決定是否能繼續進行復健,預防二次傷害。
Nowadays, the cerebral vascular accident (CVA) is a common disease. People who suffer from this disease would be inconvenient in their daily life. Patients should receive treatments actively to improve movement ability effectively. However, it takes lots of time and manpower as the rehabilitation therapies are needed to be conducted one-on-one. Moreover, whether to treat with assistive devices or not is lacking objective evaluations and also lacking data to measure the effect of training. To solve the above-mentioned inadequate situations, the idea is to develop a housebound rehab system which can provide patients with autonomous training. Also, it reduces medical costs and inconvenience of traffic.
In the hardware design of the proposed rehab system, the integration of AI servos and footboards enables patients to stretch and rotate their ankle joints. Single-chip microcomputer is installed and implemented to convert analog signals to digital signals to show on the human-machine interface, which is programmed by Visual Studio. Both active and passive modes are set in the interface. In the active mode, the user steps up the footboards voluntarily, while the servos force the user to move accordingly. Moreover, electromyogram sensors measure the electromyogram of worked muscles which is analyzed to judge whether the muscles are fatigued or not. This could avoid the patient from relapsing of the disease.
[1] 衛生福利部統計處,民國103年主要死因統計結果分析,
http://www.mohw.gov.tw/CHT/DOS/Statistic.aspx?f_list_no=312&fod_list_no=5488
[2] 世界中風組織(World Stroke Organization),「6中有1」背後的事實,
http://www.smartone.com/HealthReach_img/pdf/tchinese/5_chin.pdf
[3] 林慧娟醫師,認識腦中風,神經內科,奇美醫院,
https://www.chimei.org.tw/main/cmh_department/59090/%E8%AA%8D%E8%AD%98%E8%85%A6%E4%B8%AD%E9%A2%A8-981107.pdf
[4] 下肢膝關節復健訓練器,
http://tw.fubio.com/www/prodshow.asp?ProdId=SH180
[5] 衛生福利部社會及家庭署,輔具資源入口網,人工膝關節復健機 CPM,
https://repat.sfaa.gov.tw/07product/pro_a_main.asp?t=2&id=6335
[6] R. Ekkelenkamp, J. Veneman, H. van der kooij, “LOPES:Selective control of gait functions during the gait rehabilitation of CVA patients.” IEEE 9th International Conference on Rehabilitation Robotics, 2005
[7] M. Bernhardt, M. Frey, G. Colombo, R. Riener. “Hybrid force-position control yields cooperative behaviour of the rehabilitation robot LOKOMAT.”, IEEE 9th International Conference on Rehabilitation Robotics, 2005
[8] 潘柏瑋,中風病患踝關節復健用機器人之研究,機械工程學系,國立成功大學,碩士論文,2006
[9] 丁一,多關節型下肢輔助復健機器人之研製,機電整合研究所,國立臺北科技大學,碩士論文,2009
[10] 陳家瑩,居家式上肢復健系統之研發,工程科學系,國立成功大學,碩士論文,2014
[11] D. A. Winter, “Biomechanics of human movement”, New York: Wiley, 1979
[12] Dynamixel RX-28 datasheet,
http://support.robotis.com/en/product/dynamixel/rx_series/rx-28.htm
[13] 佐藤良孝,透視骨骼&肌肉 動態姿勢集,三悅文化,2012/04
[14] PIC18F4550 datasheet, Microchip Technology Inc., 2006,
http://ww1.microchip.com/downloads/en/devicedoc/39632c.pdf
[15] W. M. Jenkins, M. M. Merzenich, M. T. Ochs, T. allard, and E. Guic-Robles, “Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorall controlled tactile stimulation”, Joural of Neurophysiology, vol. 63, pp.82-104, 1990
[16] 游東陽醫師,腦中風的復健介紹,腦中風中心教育訓練,林口長庚復健科,2015/11,
https://www1.cgmh.org.tw/strokelnk/02/20151121/20151121_05.pdf
[17] 復健運動 被動關節運動(下肢),安德復復健科專科診所,2013/01,
http://www.e-clinic.com.tw/images/images_information/information3_1.pdf
[18] P.Konrad, (2005). The ABC of EMG A Practical Introduction to Kinesiological Electromyography, Noraxon INC. USA. Version 1.0
[19] Roberto merletti, Ph.D.”Basic concepts and applications of multichannel surface EMG”,
http://www2.kclj.si/ikn/DEJA/SIIT/2.pdf
[20] 針電極,
http://www.biopac.com/product/needle-electrodes-animaltissue/?attribute_pa_size=needle-electrode-biopolar-concentric-25-mm-tp
[21] Matlab與Visual C++混合編程教學,
http://www.programgo.com/article/15414007211/
[22] Kerem Tuncay Özgünen, Umut Çelik, Sanlı Sadi Kurdak,
“Determination of an Optimal Threshold Value for Muscle Activity Detection in EMG Analysis”, Journal of Sports Science and Medicine, pp.620-628, 2010.
[23] A. Phinyomark, A. Nuidod, P.Phukpattaranont, C. Limsakul, “Feature Extraction and Reduction of Wavelet Transform Coefficients for EMG Pattern Classification”,Electronics and Electrical Engineering No. 6(122) 2012.
[24] D. Griffin and L. Jae, "Signal estimation from modified short-time Fourier transform." IEEE Transactions on Acoustics, Speech, and Signal Processing 32.2, pp. 236-243, 1984.
[25] J. Cheng, D. Yu and Y. Yang, “Research on the Intrinsic Mode Function (IMF) Criterion in EMD Method”, Mechanical Systems and Signal Processing, vol. 20, pp. 817-824, 2006.
[26] N. E. Huang and Z.Wu, “A Review on Hilbert-Huang Transform Method and Its Applications to Geophysical Studies”, 2008.
[27] Amit j. Nimunkar and Willis J. Tompkins, “EMD-based 60-Hz noise filtering of the ECG”, 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France, 2007
[28] N. E. Huang, “Hilbert-Huang transform and its applications”, World Scientific, 2014.
[29] 王順正,骨骼肌的類型,運動生理週訊第30期,1999/11,
http://www.epsport.idv.tw/epsport/week/show.asp?repno=30
校內:2021-09-01公開