簡易檢索 / 詳目顯示

研究生: 楊淳芳
Yang, Chun-Fang
論文名稱: 居家式踝關節復健系統之研發
A Home Care Rehabilitation System for Ankle Therapy
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 56
中文關鍵詞: 踝關節居家復健系統肌電訊號中位頻率
外文關鍵詞: Ankle joint, home care rehabilitation system, electromyogram, medium frequency
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦中風是現在常見的疾病,而中風後的症狀經常會造成日常生活上的功能障礙,中風患者需積極的配合治療,才能有效的改善運動功能。目前病人所接受的復健治療,皆是以治療師徒手或配合輔具,來對患者進行一對一的治療訓練,需要相當多的人力及時間,且沒有客觀的評估及數據可以讓患者直接看見成效。因此,本研究目的研發居家式的復健輔助系統,提供患者能夠在家中自主進行復健訓練,減少醫療成本與往返醫院的不便。
    本研究在硬體方面利用兩顆AI馬達帶動踏板,完成可提供踝關節進行拉伸及旋轉運動的機構。軟體方面,則利用Visual Studio 2010,編寫人機介面,系統提供兩種訓練模式:主動模式及被動模式。主動模式是由患者自行帶動踏板進行復健運動;被動模式則是在患者無法自行施力時,由馬達驅動帶領患者做復健,並配合肌電訊號感測器,量測作用中肌肉的肌電訊號,進行分析後做疲勞的判定,決定是否能繼續進行復健,預防二次傷害。

    Nowadays, the cerebral vascular accident (CVA) is a common disease. People who suffer from this disease would be inconvenient in their daily life. Patients should receive treatments actively to improve movement ability effectively. However, it takes lots of time and manpower as the rehabilitation therapies are needed to be conducted one-on-one. Moreover, whether to treat with assistive devices or not is lacking objective evaluations and also lacking data to measure the effect of training. To solve the above-mentioned inadequate situations, the idea is to develop a housebound rehab system which can provide patients with autonomous training. Also, it reduces medical costs and inconvenience of traffic.
    In the hardware design of the proposed rehab system, the integration of AI servos and footboards enables patients to stretch and rotate their ankle joints. Single-chip microcomputer is installed and implemented to convert analog signals to digital signals to show on the human-machine interface, which is programmed by Visual Studio. Both active and passive modes are set in the interface. In the active mode, the user steps up the footboards voluntarily, while the servos force the user to move accordingly. Moreover, electromyogram sensors measure the electromyogram of worked muscles which is analyzed to judge whether the muscles are fatigued or not. This could avoid the patient from relapsing of the disease.

    中文摘要 I Extended Abstract II 誌謝 VI 目錄 VII 圖目錄 X 表目錄 XIII 第 一 章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 論文架構 8 第 二 章 系統硬體架構與介紹 9 2.1 整體系統架構 9 2.2 踏板機構設計 10 2.3 硬體介紹 12 2.3.1 AI伺服馬達與控制模組 12 2.3.2 EMG感測模組 14 2.3.3 PIC18F4550單晶片 17 第 三 章 研究方法與實驗流程 19 3.1 機械輔助訓練系統 19 3.1.1 踝關節復健運動 19 3.1.2 系統主動模式 21 3.1.3 系統被動模式 22 3.2 復健輔助系統評估方法 23 3.2.1 運動軌跡與目標軌跡的誤差評估 23 3.3 運動疲勞評估 24 3.3.1 肌電訊號介紹 25 3.3.2 肌電訊號資料擷取 26 3.3.3 Visual C++與Matlab混合編程 27 3.3.4 肌電訊號處理與分析 28 第 四 章 實驗結果與討論 35 4.1 機械輔助訓練系統 35 4.2 人機操作介面 36 4.3 主動模式評估結果 38 4.4 肌電訊號處理與分析結果 40 4.4.1 肌電訊號處理流程 40 4.4.2 疲勞評估實驗 41 4.4.3 頻域分析 42 4.4.4 時頻分析 48 4.5 結果比較 49 第 五 章 結論與建議 52 5.1 結論 52 5.2 建議 53 參考文獻 54

    [1] 衛生福利部統計處,民國103年主要死因統計結果分析,
    http://www.mohw.gov.tw/CHT/DOS/Statistic.aspx?f_list_no=312&fod_list_no=5488
    [2] 世界中風組織(World Stroke Organization),「6中有1」背後的事實,
    http://www.smartone.com/HealthReach_img/pdf/tchinese/5_chin.pdf
    [3] 林慧娟醫師,認識腦中風,神經內科,奇美醫院,
    https://www.chimei.org.tw/main/cmh_department/59090/%E8%AA%8D%E8%AD%98%E8%85%A6%E4%B8%AD%E9%A2%A8-981107.pdf
    [4] 下肢膝關節復健訓練器,
    http://tw.fubio.com/www/prodshow.asp?ProdId=SH180
    [5] 衛生福利部社會及家庭署,輔具資源入口網,人工膝關節復健機 CPM,
    https://repat.sfaa.gov.tw/07product/pro_a_main.asp?t=2&id=6335
    [6] R. Ekkelenkamp, J. Veneman, H. van der kooij, “LOPES:Selective control of gait functions during the gait rehabilitation of CVA patients.” IEEE 9th International Conference on Rehabilitation Robotics, 2005
    [7] M. Bernhardt, M. Frey, G. Colombo, R. Riener. “Hybrid force-position control yields cooperative behaviour of the rehabilitation robot LOKOMAT.”, IEEE 9th International Conference on Rehabilitation Robotics, 2005
    [8] 潘柏瑋,中風病患踝關節復健用機器人之研究,機械工程學系,國立成功大學,碩士論文,2006
    [9] 丁一,多關節型下肢輔助復健機器人之研製,機電整合研究所,國立臺北科技大學,碩士論文,2009
    [10] 陳家瑩,居家式上肢復健系統之研發,工程科學系,國立成功大學,碩士論文,2014
    [11] D. A. Winter, “Biomechanics of human movement”, New York: Wiley, 1979
    [12] Dynamixel RX-28 datasheet,
    http://support.robotis.com/en/product/dynamixel/rx_series/rx-28.htm
    [13] 佐藤良孝,透視骨骼&肌肉 動態姿勢集,三悅文化,2012/04
    [14] PIC18F4550 datasheet, Microchip Technology Inc., 2006,
    http://ww1.microchip.com/downloads/en/devicedoc/39632c.pdf
    [15] W. M. Jenkins, M. M. Merzenich, M. T. Ochs, T. allard, and E. Guic-Robles, “Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorall controlled tactile stimulation”, Joural of Neurophysiology, vol. 63, pp.82-104, 1990
    [16] 游東陽醫師,腦中風的復健介紹,腦中風中心教育訓練,林口長庚復健科,2015/11,
    https://www1.cgmh.org.tw/strokelnk/02/20151121/20151121_05.pdf
    [17] 復健運動 被動關節運動(下肢),安德復復健科專科診所,2013/01,
    http://www.e-clinic.com.tw/images/images_information/information3_1.pdf
    [18] P.Konrad, (2005). The ABC of EMG A Practical Introduction to Kinesiological Electromyography, Noraxon INC. USA. Version 1.0
    [19] Roberto merletti, Ph.D.”Basic concepts and applications of multichannel surface EMG”,
    http://www2.kclj.si/ikn/DEJA/SIIT/2.pdf
    [20] 針電極,
    http://www.biopac.com/product/needle-electrodes-animaltissue/?attribute_pa_size=needle-electrode-biopolar-concentric-25-mm-tp
    [21] Matlab與Visual C++混合編程教學,
    http://www.programgo.com/article/15414007211/
    [22] Kerem Tuncay Özgünen, Umut Çelik, Sanlı Sadi Kurdak,
    “Determination of an Optimal Threshold Value for Muscle Activity Detection in EMG Analysis”, Journal of Sports Science and Medicine, pp.620-628, 2010.
    [23] A. Phinyomark, A. Nuidod, P.Phukpattaranont, C. Limsakul, “Feature Extraction and Reduction of Wavelet Transform Coefficients for EMG Pattern Classification”,Electronics and Electrical Engineering No. 6(122) 2012.
    [24] D. Griffin and L. Jae, "Signal estimation from modified short-time Fourier transform." IEEE Transactions on Acoustics, Speech, and Signal Processing 32.2, pp. 236-243, 1984.
    [25] J. Cheng, D. Yu and Y. Yang, “Research on the Intrinsic Mode Function (IMF) Criterion in EMD Method”, Mechanical Systems and Signal Processing, vol. 20, pp. 817-824, 2006.
    [26] N. E. Huang and Z.Wu, “A Review on Hilbert-Huang Transform Method and Its Applications to Geophysical Studies”, 2008.
    [27] Amit j. Nimunkar and Willis J. Tompkins, “EMD-based 60-Hz noise filtering of the ECG”, 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France, 2007
    [28] N. E. Huang, “Hilbert-Huang transform and its applications”, World Scientific, 2014.
    [29] 王順正,骨骼肌的類型,運動生理週訊第30期,1999/11,
    http://www.epsport.idv.tw/epsport/week/show.asp?repno=30

    無法下載圖示 校內:2021-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE