簡易檢索 / 詳目顯示

研究生: 陳志遠
Chen, Chih-Yuan
論文名稱: 鋁-銅軋延複合金屬特性研究
Characterization of Clad Roll Bonding Al-Cu Bimetal
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 182
中文關鍵詞: 引伸成形突耳介金屬化合物織構軋延複合Al/Cu 雙金屬
外文關鍵詞: Clad roll bonding, Al/Cu bimetal, Intermetallic compound, Texture, Earing, Drawing
相關次數: 點閱:79下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬複合板材在電子、機械、航太等領域中具有廣泛的用途,其中Al/Cu複合板在電接觸材料,如導電排、導電接觸端子等應用具有極佳的潛力。利用軋延複合的方式可將Al、Cu兩種冶金性質迥異的金屬複合形成穩定之層狀結構。本研究以冷軋延複合技術製作Al/Cu複合板,探討不同的製程參數對於Al/Cu金屬複合板之界面結合結構與結合性的影響,並針對異質複合金屬成形性與材料異向性,探討異質複合板異向性轉變理論與機制。
    研究結果顯示Al/Cu軋延複合結合機制主要是以薄膜理論為基礎,表面處理時產生之加工硬化層在軋延力作用下破裂,導致新鮮金屬由裂縫中擠出、接觸而形成初期之有效鍵結。軋延量越高,界面有效結合部分(硬化層裂縫)隨之增加,故結合強度亦隨之提升。在退火初期,擴散擴及未結合的部分使結合強度隨結合點增加而增加,隨著退火時間增加Al/Cu中間結構逐漸成長,完全成長的中間相結構由硬脆的介金屬相所組成,包括:Al2Cu (θ), AlCu (η2), Al3Cu4 (ζ2), Al4Cu9 (γ1)所組成。由於Cu原子在Al基材中的擴散速率較Al原子在Cu基材中的擴散速率高,故最初先生成的中間相為Al2Cu(tetragonal structure),其次為Al4Cu9(Cubic structure),再者才是AlCu與Al3Cu4。界面結構的弱化主要源於中間相結構的粗化,裂縫延伸主要沿著AlCu 與Al3Cu4兩相傳播而非沿著中間相與基材間傳遞,Kirkendall voids的生成並非是造成結合強度下降的主因。
    由織構分析顯示在退火溫度300oC以下Al-side近表層顯示出明顯的R-cube,近試片中心顯現明顯β-fibre織構(Brass、Silver與Copper織構),R-cube與β-fibre織構皆貢獻45度方向的突耳。當退火溫度升至300oC以上,Al-side近表層的R-cube織構隨退火再結晶而逐漸降低,Al-side中心部分織構轉為以Cube為主的織構,貢獻0/90度方位的突耳。Cu-side近表層與中心織構則都顯示出R-cube織構,一經退火(200oC)R-cube減弱消失而產生Cube與CT織構,隨著退火溫度上升,整體織構逐漸傾向random的分佈。
    Al/Cu雙金屬複合板的突耳率則介於純Al與純Cu的之間,顯示複合板的異向性同時受到Al與Cu兩組元金屬的影響。利用複合金屬理論中的加成效應預測Al/Cu複合板之突耳行為模式,可發現在冷軋狀態下,整體突耳係數值較高,隨著退火進行則減至相當小但仍然保持負值,顯示其45度方向的塑性變形性質較強。當退火溫度高達300oC以上突耳係數轉為正值,意謂者0/90度方向的塑性變形性質較強,由45度方向轉為0/90度方向的在織構上的明顯轉變,此預測模式結果與實際Al/Cu複合板引伸成形的突耳變化關係相吻合,顯示複合板的突耳行為為個別組元金屬材質突耳行為的綜合貢獻總和。

    Clad metals have become increasingly popular for industrial applications in recent years, such as Al/Cu, Cu/SUS, Cu/Ag, Al/Ni, Steel/Ti, etc. They sometimes possess enhanced mechanical properties and corrosion resistance. Metallurgical bonding Cu to Al is widely used as a transition piece in high direct-current bus systems to transmit electricity. Clad roll bonding is a well-established and widely used solid state welding process to join dissimilar metals. Compared with the other processes such as explosion welding, friction stir welding, diffusion bonding, clad roll bonding has the most economic and productive for large size flat clad metal sheets and foils, which makes it suitable to be applied on some ductile metals like Al and Cu.
    In this study, Al/Cu bimetal sheets are made using cold clad roll bonding. The investigation on the development of interfacial structure is performed and identified at different sintering conditions. The relation between the interfacial development and fracture mechanism provides valuable information in controlling process parameters. The other objectives in this study are to investigate the earing behavior of Al/Cu bimetal sheet and variation of texture orientation. For this purpose, some analysis methods would be applied. Mechanical properties of Al/Cu bimetal sheet will be investigated. R-value (Lankford parameter) and the Δr-value (planar anisotropy) observed form tensile tests have long been used to judge the formability and predict earings orientation of metal sheets. The earings orientation of the as-received and annealed samples was determined by cylinder deep drawing test. Texture analysis was carried out using X-ray diffraction. The relation between the texture evolution of individual sheet and couple effects with the earing behaviour provides valuable information in deep drawing process.
    The investigations show that the interfacial structure development and defects formation. The bond strength will reach to maximum value under suitable sintering condition. Interfacial structures of Al/Cu bimetal plates develop with different annealing conditions. The first reaction product Al2Cu is presumed, and then the next reaction phase is Al4Cu9. AlCu, and Al3Cu4 are next. The growth of intermetallic compounds was controlled by volume diffusion mechanism. The apparent activation energies calculated for the growth of the total intermetallic compound, Al2Cu, AlCu + Al3Cu4 and Al4Cu9 intermetallic were 97.504, 107.46, 117.52 and 107.85 kJ/mol, respectively. The development of Al/Cu interfacial structure dominates the bond strength and fracture mechanism. The formation and thickening of AlCu and Al3Cu4 brittle intermetallic compounds promotes crack propagating and then damages bond strength. The Fracture mechanism is brittle cleavage. No obvious Kirkendall void formation is observed when the bond strength of the material starts to decrease in the present study. The variation of bond strength is the compromise result between some interface reactions including the joints built at unbonded region, interfacial structure development and defects formation.
    The study on the deep drawing of Al/Cu bimetal sheet shows that There are four peaks that appeared at 45o from the roll direction and they transit to 0o/90o when the annealing temperature rises up to 300oC. The earing behaviour of Cu and Al sheets shows some differences. Earings of the Cu sheet reorient from 45o to 0/90o when annealed at 200oC for 0.5 hr, whereas the earings of the Al sheet reorient from 45o to 0/90o when annealed at 300oC for 0.5 hr. The mismatch in texture orientation and mechanical properties for the Al and Cu sheets will have a great influence on Al/Cu bimetal material. The superposition assumption of the element metal layer and its texture components for earing prediction successfully explained the major behavior for earing, which is a compromised result of the growth and decline in some preferred texture components. A principle of superposition is adapted to explain the earing tendency of the Al/Cu bimetal sheet, and there is agreement with the experimental findings obtained in this study.

    中文摘要...………………………………………………………... I Abstract…………………………………………………………...... III 誌謝…………………………………………………………........... VI 目錄…………………………………………………………........... X 表目錄…………………………………………………………....... XII 圖目錄…………………………………………………………....... XIII 符號說明…………………………………………………………... XX 第一章 前言………………………………………………………. 1 1.1 層狀複合金屬發展背景…………………………………... 1 1.2 層狀複合金屬產業概況…………………………………... 2 1.3 鋁/銅層狀複合金屬的應用……………………………….. 2 1.4研究主題規劃背景與目的…………………….………….. 3 第二章 文獻回顧…………………………………......................... 6 2.1 材料複合技術研究回顧…………………………………... 6 2.2 軋延複合機制與製程技術研究回顧……………………... 10 2.3 Al/Cu雙金屬複合板研究回顧…………………………….. 15 2.4 界面擴散理論研究回顧…………………………………... 16 2.5 材料沖壓引伸成形與材料織構研究回顧………………... 19 第三章 實驗方法與步驟…………………………………....... 21 3.1實驗流程…………………………………................. 21 3.2實驗分析與儀器…………………………………........... 21 3.3實驗流程與方法…………………………………........... 22 3.3.1材料製作…………………………………............... 22 3.3.2界面結構分析…………………………………........... 24 3.3.3破裂機構分析…………………………………........... 25 3.3.4複合板結合性分析…………………………………..... 25 3.3.5 Al/Cu複合金屬板金成形性與異向性分析…………. 26 第四章 結果與討論…………………………………........... 33 4.1結合性分析…………………………………............... 33 4.2界面結構分析…………………………………............. 36 4.2.1中間相結構發展……………………………............. 36 4.2.2界面結構生長動力學模型……………………………. 39 4.2.3中間相結構對結合性的影響…………………………. 42 4.2.4破裂機構………………………………………………. 43 4.3複合板機械性質與成形性…………………………………. 47 4.4複合板引伸成形分析…………………………………...... 49 4.5複合板織構分析…………………………………........... 51 第五章 結論…………………………………................. 62 參考文獻………………………………….................... 65

    參考文獻
    [1] 鄧茂英, ”金屬多層板材料技術簡介”, 材料世界網.
    [2] 田雅琴、秦建平、李小紅, ”金屬復合板的工藝研究現狀與發展”,材料開發與應用, 21 (2006) p. 40-43.
    [3] 周俊杰、龐玉華、蘇曉莉、王敬忠, “金屬層狀復合技術的研究現狀與發展”, 材料導報, 19 (2005), p. 220-223.
    [4] 李彥利、李德富、胡捷、馬志新, “層狀金屬復合板的研究和生產現狀”, 稀有金屬, 27 (2003), p. 799-803.
    [5] V. A. Altekar, S. K. Banerjee, B. N. Ghose and J. Bhattacharya, “Development of clad metals for various applications”, NML Technical Journal, 23 (1981), p. 32-36.
    [6] K. Shinji, “Application of new welding and joining processes to rolling stock and aerospace industries”, Journal of the Japan Welding Society 72 (2003) p. 49-52.
    [7] A. Yahiro, T. Masui, T. Yoshida and D. Doi, “Development of nonferrous clad plate and sheet by warm rolling with different temperature of materials”, IJIS International, 31 (1991), p. 467-654.
    [8] Company Website:
    http://www.wickeder.de/
    http://www.cladmetal.com/
    http://www.dynamicmaterials.com/home
    http://www.ametek.com/
    http://www.corusgroup-hylite.com/
    http://www.furukawa.co.jp/index.htm
    http://www.emsclad.com/
    http://www.voestalpine.com/ag/de/products/groups.html
    http://www.imphyalloys.com/
    http://www.jfe-steel.co.jp/
    http://www.neomax.co.jp/
    http://www.matweb.com/search/searchproperty.asp
    [9] 吳彩虹、李廷舉、金俊澤, “雙金屬復層材料制備現狀及研究進展”, 鑄造, 54 (2005), p.103-107.
    [10] 于九明, “金屬層狀复合技術及其新進展”, 材料研究學報, 14 (2000), p. 12-16.
    [11] 管平、馬青圃、胡祖堯、杜月春, “雙液雙金屬復合鑄造顎板新工藝研究與應用”, 鑄造, 54 (2005), p. 779-782.
    [12] 張衛文、李元元, “半連續鑄造法制備AlCu/A1梯度材料”, 中國有色金屬學報, 5 (2002), p. 188-190.
    [13] 于治民、吳春京、謝建新、吳淵, “雙金屬層狀复台材料連鑄工藝的研究進展”, 鑄造枝術, 25 (2004), p. 400-401.
    [14] E. J. Lavernia and N. J. Grant, “Spray deposition of metals: A reiew”, Materials Science and Engineering, 98 (1981), p. 384-391.
    [15] 傅定發、宁洪龍、陳振華, “噴射沉積技術与雙金屬材料的制備”, 兵器材料科學与工程, 23 (2001), p. 65-67.
    [16] 邱惠中: “擴散焊接及其在航空航天領域的應用”, 航宇材料工藝, 4, (1997), pp. 30.
    [17] 譚天亞、傅正義、張東明, ”擴散焊接异种金屬及陶瓷/金屬的研究進展”, 硅酸鹽通報, 1 (2003), p. 60-63.
    [18] I. Takeshi, H. Kazuyuki, F. Masahiro and N. Toru, “Improvement of the bonding strength of Al/Cu transition joint made by single-shot explosive welding technique using Cu intermediate plate”, Journal of the Japan Welding Society, 12 (1994), p. 77-81.
    [19] Y. C. Ha, J. H. Bae, T. H. Ha, H. G. Lee, D. K. Kim and B. I. Lee, ”Electrochemical and optical characterization of the corrosion resistivity of explosively bonded Al-Cu bimetal”, Materials Science Forum, 475-479 (2005), p. 2675-2678.
    [20] 鄭遠謀、黃榮光, “爆炸焊接和金屬复合材料”, 上海有色金屬, 19 (1998), p. 121-124.
    [21] 林大超、史慶南, “雙金屬軋制复和技術及其研究進展”, 云南冶金, 27 (1998), p. 32-36.
    [22] 張新明、謝建新, “有色金属层状复合材料”中国材料工程大典,第4卷, p. 635-637.
    [23] 亢世江、呂玉申、陆军芳, “金属冷压焊结合机理试验研究”, 機械工程學報, 35 (1999), p. 77-80.
    [24] 馬成勇、杜則裕、李云濤, ”金屬冷壓焊界面結合機理探討”, 天津大學學報, 35 (2002), p. 516-520.
    [25] 李云濤、馬成勇、杜則裕, “Interfacial energy and match of cold pressure welded Ag/Ni and Al/Cu”,中國有色金屬學會會刊, 12 (2002), p. 814-817.
    [26] Roll Welding, ASM Handbook vol. 6, “Welding, Brazing, and Soldering”, ASM, Materials Park, OH (1993) p. 312–314 and 961–963.
    [27] H. Q. Kazagof, ”Diffusion Welding of Materials”, National Defense Industry Press, 1984. p. 4-12.
    [28] N. Bay, “Mechanism producing metallic bonds in cold welding”, welding research supplement, 1983, p. 137-142.
    [29] J. A. Cave and J. D. Williams, “The mechanism of cold pressure welding by rolling”, Journal of the institute of metals, 101 (1973), p. 203-207.
    [30] L. R. Vaidyanath and D. R. Milner, “Significance of surface preparation in cold pressure welding”, British welding journal (1960) p. 1-6.
    [31] R. C. Pendrous, A. N. Bramley and G. Pollard, ” Cold roll and indent welding of some metals”, Metals technology, 11 (1984), p. 280-289.
    [32] D. Pan, K. Gao and J. Yu, “Cold roll bonding of bimetallic sheets and strips”, Material Science and Technology 5 (1989) p. 934-939
    [33] H. Y. Wu, S. Lee and J. Y. Wang, “Solid-state bonding of iron-based alloys, steel-brass, and aluminum alloys”, Journal of Materials Processing Technology, 75 (1998), p. 173-179.
    [34] 中村光雄, “異種金屬常溫壓接”, 溶接技術, vol. 1, (1988), pp. 35-39.
    [35] 何康生, 異種金屬焊接, 機械工業出版社, 1986.
    [36] H. D. Manesh and A. K. Taheri, “An investigation of deformation behavior and bonding strength of bimetal strip during rolling”, Mechanics of Materials, 37 (2005), p. 531-542. (simulation)
    [37] J. S. Yoon, S. H. Lee and M. S. Kim, “Fabrication and brazeability of a three-layer 4343/3003/4343 aluminum clad sheet by rolling”, Journal of Materials Processing Technology, 111 (2001), p. 85-89.
    [38] J. J. Moore, D. V. Wilson and W. T. Roberts, “Fabrication of formability metal-metal composites”, Materials Science and Engineering, 48 (1981), p. 113-121.
    [39] X. K. Peng, R. Wuhrer, G. Heness, W. Y. Yeung, “Effect of rolling temperature on interface and bond strength development of roll bonded copper/aluminum metal laminates” Journal of materials science 34 (1999), p. 277-281.
    [40] X. K. Peng, R. Wuhrer, G. Heness, W. Y. Yeung, “On the interface development and fracture behaviour of roll bonded copper/aluminum metal laminates”, Journal of materials Science, v 34 (1999), p. 2029-2038.
    [41] X. K. Peng, R. Wuhrer, G. Heness and W. Y. Yeung, “Rolling strain effects on the interlaminar properties of roll bonded copper/aluminum metal laminates”, Journal of Materials Science, 35 (2000), p. 4357-4363.
    [42] J. D. Meng, W. Q. Qu, and H. S. Zhuang, “Experimental study on diffusion bonding of Al-Cu bimetal composite structure”, Journal of Materials Engineering, n1 (2003), p. 34-37.
    [43] W. Liu and J. Z. Cui, “The Kirkendall effect of the Al-Cu couple with an electric field”, Journal of Material Science Letters 16 (1997), p. 930-932.
    [44] M. Braunovic and N. Aleksandrov, “Effect of electrical current on the morphology and kinetics of formation of intermetallic phases in bimetallic aluminum-copper joints”, Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts, (1993), p. 261-268.
    [45] M. Braunovic and N. Aleksandrov, “Intermetallic compounds at aluminum-to-copper electrical interfaces: effect of temperature and electric current”, IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, 17 (1994), p. 78-85.
    [46] N.F. Kazakov:Diffusion bonding of materials, Oxford , Pergamon Press (1985), New York :Mir Publishers, Moscow.
    [47] Richard J. Borg, G.J. Dienes, An introduction to solid state diffusion, Academic Press (1988), Boston.
    [48] T. Akatsu, N. Hosoda, T. Suga, and M. Ruhle, “Atomic structure of Al/Al interface formed by surface activated bonding”, Journal of Materials Science, 34 (1999), p. 4133-4139.
    [49] J. M. Howe, “Atomic structure, composition, mechanisms and dynamics of transformation interfaces in diffusional phase transformations”, Materials Transactions, JIM, 39 (1998), p. 3-23.
    [50] A. E. Romanov, T. Wagner and M. Ruehle, “Coherent to incoherent transition in mismatched interfaces”, Scripta Materialia, 38 (1998), p. 869-875.
    [51] N. D. Browning and S. J. Pennycook, “Direct experimental determination of the atomic structure at internal interfaces”, Journal of Physics D, 29 (1996), p. 1779-1798.
    [52] K. L. Merkle, “High-resolution electron microscopy of interfaces in fcc materials”, Ultramicroscopy, 37 (1991), p. 130-152.
    [53] A. T. Paxton: “Atomic structure of metallic interfaces”, Journal of Physics D, 29 (1996), p. 1689-1698.
    [54] R. G. Hoagland, T. E. Mitchell, J. P. Hirth and H. Kung, “On the strengthening effects of interfaces in multilayer fcc metallic composites”, Philosophical Magazine A, 82 (2002), p. 643-664.
    [55] J. G. Ren, Y. J. Li and F. Tao, “Microstructure characteristics in the interface zone of Ti/Al diffusion bonding”, Materials Letters, 56 (2002), p. 647-652.
    [56] G. A. Lopez, S. Sommadossi, W. Gust, E. J. Mittemeijer and P. Zieba, “Phase characterization of diffusion soldered Ni/Al/Ni interconnections”, Interface Science, 10 (2002), p. 13-19.
    [57] L. N. Larikov, Diffusion. Intermetallic compounds: Vol. 1 Priciples. Eds. J. H. Westbrook and R. L. Fleischer. N. Y. John Wiley& Sons Ltd, 1994, p. 757-770.
    [58] M. J. Rathod and M. Kutsuna, “Joining of Aluminum Alloy 5052 and Low-Carbon Steel by Laser Roll Welding”, Welding Journal, 83 (2004), p. 16-26.
    [59] D.A. Porter, K.E. Easterling, Phase transformations in metals and alloys, London ;Chapman & Hall (1992), New York.
    [60] Avitzur and Betzalel: “Handbook of metal-forming processes”, New York : Wiley (1983).
    [61] H. Kawabe, S. Matsuoka, T. Shimizu, O. Furukimi, K. Sakata and Y. Ito: “Effect of increase in r-value on press formability for cold-rolled steel sheet”, JSAE Review, 23 (2002), p. 139-141.
    [62] Y. H. Liu and W. C. Zhu, “Experimental investigation of the r and Δr value in A-K sheet subjected to two-stage straining”, Journal of Materials Processing Technology, 48 (1995), p. 129-133.
    [63] R. Hill, “The Mathematical Theory of Plasticity”, (1950), p. 328.
    [64] R. T. Thorley, and G. E. G. Tucker, “The control of earing in aluminum and it alloys”, Journal of the institute of metals, 86 (1957), p. 353-361.
    [65] J. G. HU and T. Ishikawa, “Texture and plastic anisotropy in aluminum alloy sheets”, Journal of Japan Institute of Light metal, 48 (1998), p. 540-547.
    [66] J. Savoie, Y. Zhou, J. J. Jonas and S. R. Macewen, “Textures induced by tension and deep drawing in aluminum sheets”, Acta Materialia 44 (1996), p. 587-605.
    [67] Y. Liu, J. Sun, L. Zhou, Y. Tu, F. Xing, Y. Guo and Q. Tong, “Experiment investigation of deep-drawing sheet texture evolution”, Materials Science & Engineering A 229 (1997), p. 174-181.
    [68] X. M. Cheng, “Earing behavior and crystallographic texture of aluminum alloys during cold rolling”, Journal of Materials Engineering and Performance 10 (2001), p. 399-404.
    [69] J. Liu and J. G. Morris, “Macro-, micro- and mesotexture evolutions of continuous cast and direct chill cast AA 3105 aluminum alloy during cold rolling”, Materials Science and Engineering A 357 (2003), p. 277-296.
    [70] W. C. Liu and J. G. Morris, “Kinetics of the formation of the β fiber rolling texture in continuous cast AA 5xxx series aluminum alloys”, Scripta Materialia, 47 (2002), p. 743-748.
    [71] A. Duckham, O. Engler and R. D. Knutsen, “Moderation of the recrystallization texture by nucleation at copper-type shear bands in Al-1Mg”, Acta Materialia, v 50, n 11, Jun 28, 2002, p. 2881-2893.
    [72] B. J. Duggan, K. Luecke, G. Koehlhoff and C. S. Lee, ”On the origin of cube texture in copper”, Acta Metallurgica et Materialia, 41 (1993), p. 1921-1927.
    [73] F. Heidelbach, H. R. Wenk, S. R. Chen, J. Pospiech and S. I. Wright, “Orientation and misorientation characteristics of annealed rolled and recrystallized copper”, Materials Science & Engineering A 215 (1996), p. 39-49.
    [74] X. F. Yu, Y. M. Zhao, X. Y. Wen, and T. Zhai, “A study of mechanical isotropy of continuous cast and direct chill cast AA5182 Al alloys”, Materials Science and Engineering A, 394 (2005), p. 376-384.
    [75] Y. Zhou, J. J. Jonas and K. W. Neale, “Behaviour of initial texture components during the plane strain drawing of FCC. sheet metals”, Acta Materialia 44 (1996), p. 607-619.
    [76] W. C. Liu and J. G. Morris, “Effect of pre-treatment on recrystallization and recrystallization textures of cold rolled CC AA 5182 aluminum alloy”, Materials Science and Engineering A, 363 (2003), p. 253-262.
    [77] W. C. Liu, T. Zhai and J. G. Morris, “Comparison of recrystallization and recrystallization textures in cold-rolled DC and CC AA 5182 aluminum alloys”, Materials Science and Engineering A, 358 (2003), p. 84-93.
    [78] R. Sowerby, C. S. Da, C. Viana and G. J. Davies, “The influence of texture on the mechanical response of commercial purity copper sheet in some simple forming processes”, Materials Science and Engineering 46 (1980), p. 23-51.
    [79] B. Bacroix, Th. Chauveau, J. Ferreira Duarte, A. Barata da Rocha and J. Gracio, “Respective influences of grain size and texture on the formability of a 1050 aluminum alloy”, International Journal of Engineering Science 37 (1999), p. 509-526.
    [80] W. C. Liu and J. G. Morris, “Comparison of the texture evolution in cold rolled DC and SC AA 5182 aluminum alloys” Materials Science and Engineering A, 339 (2003), p. 183-193.
    [81] J. C Lee, H. K Seok, J. H. Han and Y. H. Chung, “Controlling the textures of the metal strips via the continuous confined strip shearing(C2S2) process”, Materials Research Bulletin, 36 (2001), p. 997-1004.
    [82] M. Jahazi and M. Goudarzi, “Influence of thermomechanical parameters on the earing behaviour of 1050 and 1100 aluminium alloys”, Journal of Materials Processing Technology, 63 (1997), p. 610-613.
    [83] J. T Liu and J. G. Morris, “Macro-, micro- and mesotexture evolutions of continuous cast and direct chill cast AA 3105 aluminum alloy during cold rolling” Materials Science and Engineering A, 357 (2003), p. 277-296.
    [84] P. W. Kao, ”Texture and earing behaviour of cold-rolled aluminum alloy 3004”, Materials Science and Engineering, 74 (1985), p 147-157.
    [85] B. Ren, Ph.D. Thesis, University of Kentucky, USA, 1994 (引自周棟勝, 中鋼研究報告:面心立方結構金屬之及合組之研究)
    [86] H. Takuda, K. Mori, H. Fujimoto and N. Hatta, “Prediction of forming limit in deep drawing of Fe/Al laminated composite sheets using ductile fracture criterion”, Journal of Materials Processing Technology, 60 (1996), p. 291-296.
    [87] M. Q. Li, “Prediction of the optimum dimensions of the crystalline grains for the deep-drawing of metals”, Journal of Materials Processing Technology, 26 (1991), p. 349-354.
    [88] J. T Gerber, J. T. Chauveau and B. Bacroix, “A quantitative analysis of the evolution of texture and stored energy during annealing of cold rolled copper”, Acta Materialia, 51 (2003), p. 6359-6371.
    [89] H. Takuda, H. Fujimoto and N. Hatta, “Formabilities of steel/aluminium alloy laminated composite sheets”, Journal of Materials Science, 33 (1998), p. 91-97.
    [90] 彭大暑、朱旭霞、寧愛林, “不銹鋼/鋁合金/不銹鋼多層復合板的成形性能”, 模具技術, 3 (2001), p. 45-47.
    [91] J. K. Kim, M. Y. Huh, J. C. Lee, K. K. Jee and O. Engler, “Evolution of strain states and textures during roll-cladding in SUS/Al/SUS sheets”, Journal of Materials Science, 39 (2004), p. 5371-5374.
    [92] 經濟部科專案, 沖壓模具設計手冊, p. 46
    [93] M. Gotoh, M. Katoh and M. Yamashita, “Studies of stretch-drawing process of sheet metals”, Journal of Materials Processing Technology, 63 (1997), p. 123-128.
    [94] Y. H. Liu, J. H. Sun, L. Y. Zhou, Y. G. Tu, F. Xing, Y. C. Guo and Q. Tong, “Experiment investigation of deep-drawing sheet texture evolution”, Journal of Materials Processing Technology, 140 (2003), p. 509-513.
    [95] K. Lange: “Sheet metal properties and testing method”, Handbook of metal forming, McGraw-Hill (1985)
    [96] 張六文、陳福左, “X光繞射分析原理與應用”, 技術與訓練, 23 (1998), p. 59-86.
    [97] 許樹恩、吳泰伯, ”X光繞射原理與材料結構分析”, 中國材料科學學會., p. 429-457
    [98] 井上博史,稻數直次, “集合組織的測定與解析”,輕金屬, 47 (1997), p. 246-257.
    [99] V. Randle and O. Engler, Introduction to texture analysis, London ;CRC press, New York., p. 101-123
    [100] M. Y. Huh, Y. S. Cho and O. Engler, “Effect of lubrication on the evolution of microstructure and texture during rolling and recrystallization of copper”, Materials Science and Engineering A 247 (1998), p. 152-164.
    [101] M. Berveiller, A. Naddari, N. Fakri and A. Korbel, “Role of shear bands in the evolution of copper texture”, International Journal of Plasticity, 8 (1992), p. 857-865.
    [102] R. L. Higginson, C. Pinna, J. H. Beynon and B. P Wynne, “Effect of roll pass schedule on through thickness texture development in Al-Mn alloy”, Materials Science and Technology, 19 (2003), p. 477-482.
    [103] B. Hannech, N. Lamoudi, N. Benslim and B. Makhloufi, “Intermetallic formation in the aluminum-copper system”, Surface Review and Letters, 10 (2003), p. 677-683.
    [104] C. L. Liu, X. Y. Liu and L. J. Borucki, “Defect generation and diffusion mechanisms in Al and Al-Cu”, Applied Physics Letters, 74 (1999), p.34-36
    [105] Li-Hui Chen, Teaching material: diffusion, NCKU, TW, 2000
    [106] S. H. Hong, H. T. Jeong, C. H. Choi and D.N. Lee, “Deformation and recrystallization textures of surface layer of copper sheet”, Materials Science & Engineering A, 229 (1997), p. 174-181.
    [107] J. H. Han, H. K. Seok, Y. H. Chung, M. C. Shin and J. C. Lee, “Texture evolution of the strip cast 1050 Al alloy processed by continuous confined strip shearing and its formability evaluation”, Materials Science and Engineering A, 323 (2002), p. 342-347.
    [108] X. M. Cheng and J. G. Morris, “Texture, microstructure and formability of SC and DC cast Al-Mg alloys”, Materials Science and Engineering A, 323 (2002), p. 32-41.
    [109] O. V. Mishin, B. Bay and D. J Jensen, “Through-thickness texture gradients in cold-rolled aluminum”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 31 (2000), p. 1653-1662.
    [110] S. E. Schoenfeld and R. J. Asaro, “Through thickness texture gradients in rolled polycrystalline alloys”, International Journal of Mechanical Sciences, 38 (1996), p. 661-683.
    [111] T. Sakai, S. Hamada and Y. Saito, “Improvement of the r-value in 5052 aluminum alloy sheets having through-thickness shear texture by 2-pass single-roll drive unidirectional shear rolling” Scripta Materialia, 44 (2001), p. 2569-2573.
    [112] Y. Saito, H. Utsunomiya, H. Suzuki and T. Sakai, “Improvement in the r-value of aluminum strip by a continuous shear deformation process” Scripta Materialia, 42 (2000), p. 1139-1144.

    下載圖示 校內:2008-06-14公開
    校外:2008-06-14公開
    QR CODE