| 研究生: |
王韋鈞 Wang, Wei-Chun |
|---|---|
| 論文名稱: |
嘉南大圳幹線水閘門智慧化操作探討—以南幹線為例 Smart Operation of Sluice Gates of the Chia-Nan Irrigation Channels — A Case of the South Trunk |
| 指導教授: |
周乃昉
Zhou, Nai-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 智慧化 、嘉南大圳 、水閘門 、開度 、迴水演算 |
| 外文關鍵詞: | Smart, Chia-Nan irrigation channel, Sluice gate, Opening, backwater calculation |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
渠道取水流量與水閘門的啟閉開度有相當大的關聯性,尤其在水資源開發不易的環境下,各灌溉渠道放出正確的流量將有助於節省水資源,使得每一滴水都有它的用處。而水閘門開度啟閉將影響整個灌溉渠道系統,於水路工作站待水流穩定後需多次調整水閘門才能放出正確流量。
本研究案例採用嘉南大圳南幹線灌區之二期作稻作及三年二作初放水期間之流量與水閘門開度資料進行模擬,其供灌水量約15cms為南幹線放水量較大時段。
已知各灌溉水路之查定流量後利用標準步推法進行迴水演算計算南幹線渠道水位變化,並可作為各取水門之上游水位依據,進而計算該灌溉水路在該查定流量下,取水門所需開度提供工作站參考依據。工作站依據初次建議開度操作水閘門後,由物聯網平台將數據回傳後,修正查定流量及支線水門上游水深後,重新建議修正水閘門建議開度,提高工作站水閘門調整效率。
本文精準各灌溉水路放水流量,並於放水或是旬間改變水量前提供水閘門建議開度,有效提高現地工作站轄區內水閘門調整效率。結果顯示透過本研究修正查定流量及支線水門上游水深後,能有效降低麻豆支線放水流量誤差8.9%與善化支線放水流量誤差8.2%。
There is related between the water intake flow of the channel and the opening and closing of the sluice gate, especially it is not easy to develop water resources. Each irrigation channel flows the correct rate, it will help to save water resources and make every drop of water useful. And the opening of sluice gate will affect the irrigation channel system. After the water flow being stable, the sluice gates need to be adjusted many times to flow the correct rate.
This case study uses the water flow and sluice gate opening data during the first stage in the South trunk of the Chia-Nan irrigation channel. The water supply for irrigation is about 15cms, which is the period when the water discharge in the south trunk is relatively large.
After determining the projected water volume of each irrigation channel, the standard step method is used to calculate the water level change of the south trunk and use it as the basis for the upstream water level of each sluice gate. Then calculate the require opening of the water intake gate of irrigation channel under the projected water volume to provide a reference basis for the workstation. After the workstation operates the sluice gate according to the initial recommended opening, the data is returned from the platform panel, and the projected water volume and the upstream water depth of gate are corrected. Then the proposed sluice gate opening is revised to improve the adjustment efficiency of the workstation.
This paper refines the discharge flow of each irrigation channel, and provides the recommended opening of the sluice gate before releasing the water or changing the water volume in ten-day period. It can effectively improve the efficiency of water gate adjustment in the workstation. The results show that the correction of the flow rate and the upstream water depth of the branch gate can effectively reduce the error of 8.9% of the discharge flow of the Ma-dou irrigation channel and 8.2% of the discharge of the Shan-hua irrigation channel.
1.行政院農委會,「提升農業灌溉水資源管理業務—農田水利會灌溉管理業務規範【上冊】」,2016。
2.行政院農委會,「提升農業灌溉水資源管理業務—農田水利會灌溉管理業務規範【下冊】」,2016。
3.行政院農委會水土保持局,「水土保持手冊」,行政院,2017。
4.交通技術標準規範公路類公路工程部,「公路排水設計規範」,行政院交通部,台北市,2018。
5.汪島軍,「水閘門維護保養與操作範例及功能研究」,財團法人國立雲林科技大學文教基金會,1998。
6.林婷,GS1 MobileCom在零售業的加值應用,2010年GS1 TW夏季刊,第5-11頁,2010。
7.施嘉昌等編著,「灌溉排水原理」,中央圖書,台北市,1988。
8.施清吉、倪佩君,洩水閘門流相關係數之實驗探討,農業工程學報,第五十三卷,第四期,第69-79頁,2007。
9.財團法人成大研究發展基金會,「防潮閘門之設計與水理參數推估之研究(1/2)」,經濟部水利署,2011。
10.黃偉、張秦耀、廖國凱、廖仁忠,智慧聯網應用及其技術簡介:以智慧化灌溉渠道系統為例,電工通訊季刊,2015第1季,第24-31頁,2015。
11.黃凱,灌區量測水技術,廣西水利科學研究院,2017。
12.謝平城,「渠道水力學」,五南出版,2017。
13.Balogun, O. S. Hubbard, M., & DeVries, J. J. , Automatic Control of Canal Flow Using Linear Quadratic Regulator Theory, Journal of Hydraulic Engineering, 114(1), pp. 75–102, 1988.
14.Barros, M. T. L., Yang, S., Braga, B. P. F., Sun, Y.-H., & Yeh, W. W.-G. Optimal Design for Automatic Control of On-Demand Canal Systems, Journal of Infrastructure Systems, 3(2),pp. 59–67, 1997.
15.Bonet, E., Gómez, M., Yubero, M. T., & Fernández-Francos, J. GoRoSoBo: an overall control diagram to improve the efficiency of water transport systems in real time, Journal of Hydroinformatics, 19(3), pp. 364–384, 2017.
16.Bonet, E., Gómez, M., Yubero, M. T., & Fernández-Francos, J. GOROSOBO Simplified: an accurate feedback control algorithm in real time for irrigation canals, Journal of Hydroinformatics, 21(6), pp. 945-961, 2019.
17.Henry, H. R. A Study of Flow from a Submerged Sluice Gate, University of Iowa, Iowa city, pp. 1-32, 1950.
18.ITU, The Internet Report 2005 executive summary – Internet of Things., 2005.
19.Kong, Quan, Yang, Song, & Zhu. Automatic Control of the Middle Route Project for South-to-North Water Transfer Based on Linear Model Predictive Control Algorithm, Water, 11(9), No.1873, 2019.
20.Lee, D.-S. Investigating Energy-Saving Potentials in the Cloud, Sensors, 14(2), pp. 3578–3603, 2014.
21.Oskuyi and Salmasi. Vertical Sluice Gate Discharge Coefficient, Journal of Civil Engineering and Urbanism., 2(3), pp. 108-114, 2012.
22.Prabhata K. Swamee. Sluice-gate discharge equation , Journal of Irrigation and Drainage Engineering., 118(1), pp. 56-60, 1992.
23.Rajaratnam and Subramanya. Flow Equation for the Sluice Gate, Journal of the Irrigation and Drainage Division, 93(3), pp. 167-186, 1967.
24.Soler Guitart, J., Gomez Valentín, M., & Rodellar Benedé, J. A control tool for irrigation canals with scheduled demands, Journal of Hydraulic Research, 46(1), pp. 152–167, 2008.