簡易檢索 / 詳目顯示

研究生: 許家誠
Hsu, Chia-Cheng
論文名稱: 凡得瓦力金屬電極與單層氧化鎢摻雜之三層二硒化鎢電晶體製程技術
Layer-control WOx doping with via-contact fabrication techniques for trilayer WSe2 transistor
指導教授: 陳則銘
Chen, Tse-Ming
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 41
中文關鍵詞: 二維材料二硒化鎢凡得瓦力金屬電極氧氣等離子氧化金屬與半導體接面
外文關鍵詞: 2D material, WSe2, via-contact technology, O2 plasma doping, metal-semiconductor interface
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二維材料如同過渡金屬二硫屬化物 TMDC) 可用於製造電子器件,因為它們具有較大的直接帶隙和 非常小的 原 子薄層 0.7 nm 。然而, 透過光刻和離子植入等常規的製程技術容易使得 原子薄 層 損壞,產生具有明顯缺陷的原子薄層, 其中包括原子的破壞和不同原子間的鍵結 。因此,創造高性能和良好 電阻 的二維晶體管將是一個挑戰 。

    在這項工作中,我們將結合兩種技術來降低接觸電阻,包括 六方氮化硼 hBN 與金屬所形成 的凡得瓦力金屬電極與氧氣等離子氧化技術形成單層氧化鎢(WOx)層作為非破壞性摻雜 (doping) 。此外,我們報告了氧化前後少層 WSe2 特徵的拉曼光譜和光致發光光譜。通過 輕微 的 氧氣 等離子 氧化 技術 (10 mW 15 s.c.c.m 60 sec) 使得只有 WSe2 的表層被氧化並轉化為 WOx 並且形成 p type doping 進而改善樣品品質 。此外,我們證明通過與蝕刻狀態的接觸可以拾取並與氧化的 WSe2 結合。

    Two-dimensional materials such as transition metal dichalcogenides (TMDCs) could be used to create electronic devices due to their sizable direct bandgap and natural atomically thin layer (0.7nm). However, during the conventional fabrication process, such as direct metallization and ion implantation, the atomic thin material is easily damaged, producing a rough layer with apparent defect, including atomic disorder and interface bonding. Therefore, creating 2D transistor with high performance and good contact will be a challenge.
    In this work, we will show a method that combines two techniques to reduce contact resistance, including van der Waal integration of metal with an etched hexagonal boron nitride (hBN), also known as via-contact technique, and using O2 plasma oxidation method to form a single tungsten oxide (WOx) layer as a non-destructive doping. Also, we report Raman and photoluminescence spectra of few-layer WSe2 characteristic before and after oxidation. By using gentle O2 plasma (10 mW, 15 s.c.c.m, 60 sec) only the surface layer of WSe2 is oxidized and convert into WOx, which can show hole-doping to improve the device performance. Moreover, we have demonstrated via contact with etched regime can be picked up and combined with oxidized WSe2.

    Content Chapter 1 Introduction 1 Chapter 2 Theoretical Background 3 2.1 Crystal structure and band energy of WSe2 3 2.2 Ideal Schottky-Mott rule 5 2.3 Fermi-level pinning 7 2.4 Current transport for metal-semiconductor contact 8 Chapter 3 Device fabrication and measurement setup 9 3.1 Mechanically exfoliate 9 3.2 Thermal annealing 9 3.3 Bubble-free fabrication 10 3.4 Self-assemble monolayer 12 3.5 Via contact fabrication and transfer 12 3.6 Contact Fabrication and lift-off 13 3.6 Measurement 14 3.6.1 Cryostats 14 3.6.2 DC measurement 14 Chapter 4 Experimental results 15 4.1 Characteristics of few-layer WSe2 15 4.1.1 Atomic force microscopy 15 4.1.2 Raman spectroscopy 16 4.1.3 Photoluminescence 18 4.2 Self-limited oxidation 20 4.3 Device descriptions 23 4.4 Electrical properties of oxidized trilayer WSe2 24 4.4.1 Before oxidation 24 4.4.2 First oxidation 25 4.4.3 Second oxidation 27 4.5 Contact properties of trilayer WSe2 29 4.5.1 Discussion 30 4.6 Four-terminal measurement 31 4.7 Low-temperature measureme 33 4.8 Hysteresis between forward and backward voltage 35 Chapter 5 Conclusion 37 Bibliography 39

    [1] Y. Liu, X. Duan et al. “Promises and prospects of two-dimensional transistors” Nature 591, 43–53 (2021).
    [2] A. Geim et al. “Van der Waals heterostructures” Nature 499, 419–425 (2013).
    [3] Y. Liu, J. Guo, E. Zhu et al. “Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions” Nature 557, 696–700 (2018).
    [4] J. Y. Choi, A. Nipane et al. “Transferred via contacts as a platform for ideal two-dimensional transistors” Nat Electron 2, 187–194 (2019).
    [5] A. Borah, A. Nipane et al. “Low-Resistance p‑Type Ohmic Contacts to Ultrathin WSe2 by Using a Monolayer Dopant” ACS Appl. Electron. Mater. 3, 7, 2941–2947 (2021).
    [6] Q. Wang, K. Kalantar-Zadeh, A. Kis et al. “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides” Nature Nanotech 7, 699–712 (2012).
    [7] A. Kumar, P.K. Ahluwalia. et. at. “Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors” Eur. Phys. J. B 85, 186 (2012).
    [8] D. Neaman “Semiconductor Physics and Devices Basic Principle, Fourth Edition” (2012).
    [9] D. Purdie et al. “Cleaning interfaces in layered materials heterostructures” Nat Commun 9, 5387 (2018).
    [10] C. Went et al. “A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics” Science Advances, 5, 12 (2019).
    [11] T. Ngo et al. “Selective Electron Beam Patterning of Oxygen-Doped WSe2 for Seamless Lateral Junction Transistors” Adv. Sci. (2022)
    [12] F. J. Giessibl. “Advances in atomic force microscopy” (2003).
    [13] M. Yamamoto et al. “Self-Limiting Oxides on WSe2 as Controlled Surface Acceptors and Low-Resistance Hole Contacts” Nano Lett. 16, 4, 2720–2727 (2016).
    [14] M. Yamamoto et al. “Self-Limiting Layer-by-Layer Oxidation of Atomically Thin WSe2” Nano Lett. 15, 3, 2067–2073 (2015).
    [15] A. N. Hoffman et al. “Tuning the electrical properties of WSe2 via O2 plasma oxidation: towards lateral homojunctions”2D Mater. 6 045024 (2019).
    [16] P. Tonndorf et al. "Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2," Opt. Express 21, 4908-4916 (2013).
    [17] Z. Li et al. “Layer Control of WSe2 via Selective Surface Layer Oxidation” ACS Nano 10, 7, 6836–6842 (2016)
    [18] G. Sun et al. "Intersubband approach to silicon based lasers—circumventing the indirect bandgap limitation," Adv. Opt. Photon. 3, 53-87 (2011).
    [19] D. J. Late. et. al. “Hysteresis in Single-Layer MoS2 Field Effect Transistors” ACS Nano 6, 6, 5635–5641 (2012).
    [20] A. D. Bartolomeo et al. “Hysteresis in the transfer characteristics of MoS2 transistors” 2D Mater. 5 015014 (2018).
    [21] M. Datye et al. “Reduction of hysteresis in MoS2 transistors using pulsed voltage measurements” 2D Mater. 6 011004 (2019).
    [22] T. Knobloch, B. Uzlu, Y. Illarionov et al. “Improving stability in two-dimensional transistors with amorphous gate oxides by Fermi-level tuning” Nat Electron 5, 356–366 (2022).
    [23] J. A. Alexander-Webber et al. “Encapsulation of graphene transistors and vertical device integration by interface engineering with atomic layer deposited oxide” 2D Mater. 4 011008 (2017).
    [24] L. Smith et al. “High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures” ACS Nano 14 (11), 15293-15305 (2020).

    QR CODE