簡易檢索 / 詳目顯示

研究生: 劉培基
Liu, Pei-Chi
論文名稱: 錫鋅系銲錫與銀基材之界面反應
The interfacial reaction between Sn-Zn series solders and Ag substrate
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 145
中文關鍵詞: 錫鋅系銲錫銀基材界面反應
外文關鍵詞: Ag, interfacial reaction, Sn-Zn based solder
相關次數: 點閱:137下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為改善錫鋅系銲錫合金之缺點,故添加少量的Al、Ag與Ga金屬元素進行改質,並利用潤濕天平量測錫鋅系銲錫與銅、銀基材之潤濕行為,以評估添加金屬元素的改質效應。另一方面,錫鋅系銲錫與銀基材之界面反應鮮少被研究討論,本研究針對錫鋅系銲錫與銀基材的固-液與固-固反應,及其界面介金屬化合物的成份鑑定與成長型態加以分析討論,並描述其生長行為與機制。
    Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫合金之顯微組織為針狀富鋅相與AgZn3介金屬化合物散佈於錫基地中,而此銲錫合金與銅、銀基材之潤濕行為,相較於其他銲錫(Sn、Sn-9Zn、Sn-Zn-0.5Al、Sn-Zn-XGa和Sn-8Zn-3Bi),呈現出最佳的潤濕性質(最短的潤濕時間與最強的最大潤濕力)。
    固-液反應結果顯示,銀基材與Sn-9Zn、Sn-Zn-0.5Al、Sn-Zn-0.5Ga和Sn-8Zn-3Bi等錫鋅系銲錫於250℃反應時,於界面形成雙層生成物的型態,由X光繞射分析與元素線掃描結果可知,靠近銀基材處為ζ-AgZn,而靠近銲錫處為γ-Ag5Zn8,且並無發現含有Sn之介金屬化合物。而Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫合金與不同基材於250℃之固-液反應,分別形成γ-Cu5Zn8(銅基材)與ζ-AgZn、γ-Ag5Zn8(銀基材),且熔融銲錫中的Ag與Zn元素會在冷卻過程中,於界面處形成ε-AgZn3。
    關於Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫合金與銅、銀基材之固-液反應,為求得介金屬化合物之生長動力數據,本研究改變反應溫度與時間,以量測其生成物厚度之變化。結果顯示Ag-Zn介金屬化合物於Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銀基材之界面生長為擴散控制(n = 0.5),且成長之反應活化能為126.3 KJ/mol。另一方面,此銲錫與銅基材之固-液反應結果顯示,γ-Cu5Zn8於界面生長為反應控制(n = 1),而成長之反應活化能為24.3 KJ/mol。
    經150℃時效處理後,銀基材與錫鋅系銲錫(Sn-9Zn、Sn-Zn-0.5Al與Sn-Zn-0.5Ag-0.1Al-0.5Ga)之固-固反應界面型態大致相同;扇貝層狀的型態轉變成平坦層狀。且隨著時效時間的增加,ε-Ag3Sn開始形成於Ag5Zn8與銲錫之間,並逐漸往銀基材延伸成長,造成Ag3Sn與Ag-Zn層混合交錯的型態。

    The drawbacks of Sn-Zn based solders could be improved by alloying modification. This study investigated the effect of various alloying elements, Al, Ag and Ga, on the wetting behavior between the Sn-Zn based solders and Cu/Ag substrates. On the other hand, the interfacial reaction between the Sn-Zn based solders and Ag substrate were rarely studied before. The solid-liquid and solid-solid reactions of Sn-Zn based solders were also investigated, and the intermetallic compounds (IMCs) formed at interface were identified and the growth behaviors were discussed.
    The microstructure of Sn-Zn-0.5Ag-0.1Al-0.5Ga solder consists of needle Zn-rich phase and AgZn3 distributed in the Sn matrix. This solder performed the best wetting properties (shortest wetting time and largest wetting force) as compared to other solders (Sn, Sn-9Zn, Sn-Zn-0.5Al, Sn-Zn-XGa and Sn-8Zn-3Bi).
    The solid-liquid reaction at 250℃ gives rise to a Ag-Zn two-layer structure between Ag substrate and Sn-9Zn, Sn-Zn-0.5Al, Sn-Zn-0.5Ga and Sn-8Zn-3Bi. XRD and elemental line-scan results revealed, one layer to be γ-Ag5Zn8 which exists close to the solder and the other layer as ζ-AgZn next to the Ag substrate. The IMC content of Sn was not observed at all. At the interface between Sn-Zn-0.5Ag-0.1Al-0.5Ga solder and Cu, Ag substrate, the γ-Cu5Zn8, ζ-AgZn and γ-Ag5Zn8 were formed respectively during the solid-liquid reaction at 250℃. During the solidification, the ε-AgZn3 was formed at interface due to the reaction between Ag and Zn of the solder.
    The kinetic values of IMC growth could be calculated by measuring the thickness of IMCs after solid-liquid reaction at different temperature for different time. The results of calculation revealed that the growth of Ag-Zn IMC formed at the interface between Sn-Zn-0.5Ag-0.1Al-0.5Ga solder and Ag was diffusion controlled (n = 0.5), and the activation energy of growth was 126.3 KJ/mol. On the other hand, the growth of Cu5Zn8 formed at Cu substrate was reaction controlled (n = 1), and the activation energy was 24.3 KJ/mol.
    After 150℃ aging treatment, the interfacial morphologies between Ag substrate and Sn-Zn based solders (Sn-9Zn, Sn-Zn-0.5Al and Sn-Zn-0.5Ag-0.1Al-0.5Ga) were similar. The reaction layers were transformed from scallop-like to continuous. With increasing aging time, the growth of Ag3Sn increases and it moves forward and very close to the substrate. The mixture structures of Ag3Sn and Ag-Zn layer were eventually formed at the interface.

    總目錄 中文摘要....................................................................I Abstract....................................................................III 總目錄......................................................................V 表目錄......................................................................VIII 圖目錄......................................................................IX 第壹章、簡介 1 1-1電子構裝技術與無鉛銲錫之發展.............................................1 1-2 無鉛銲錫合金及其性質....................................................2 1-3 錫鋅銲錫之改質..........................................................8 1-4 界面反應動力學..........................................................11 1-4-1 擴散控制反應..........................................................13 1-4-2 界面反應控制反應......................................................16 1-5 潤濕行為................................................................18 1-5-1 銲錫材料的可銲錫性....................................................20 1-5-2 銲錫材料潤濕性的評估..................................................23 第貳章、實驗方法與步驟......................................................27 2-1 實驗構想................................................................27 2-2 實驗材料製備............................................................27 2-2-1 無鉛銲錫合金的配製....................................................27 2-2-2 銅、銀基材............................................................30 2-3 熔點量測實驗............................................................30 2-4 XRD結晶相鑑定...........................................................31 2-4-1 錫鋅系銲錫塊材結晶相鑑定..............................................32 2-4-2 界面介金屬化合物相鑑定................................................32 2-5 潤濕特性量測............................................................34 2-5-1 潤濕天平..............................................................34 2-5-2 潤濕曲線..............................................................37 2-6 時效熱處理..............................................................37 2-7界面反應觀察與成份分析...................................................39 第參章 、結果與討論.........................................................40 3-1 錫鋅系銲錫合金之性質分析................................................40 3-1-1 錫鋅系銲錫合金的X光繞射分析...........................................40 3-1-2 錫鋅系銲錫合金之顯微結構觀察..........................................43 3-2 錫鋅系銲錫合金之熱性質分析..............................................48 3-3 錫鋅系銲錫與銀、銅基材之潤濕行為........................................54 3-3-1 不同銲錫組成對潤濕時間之影響..........................................54 3-3-2 不同銲錫組成對最大潤濕力之影響........................................59 3-4 錫鋅系銲錫與基材之固-液界面反應與分析...................................63 3-4-1純Sn與銀基材之界面反應.................................................63 3-4-2 Sn-9Zn銲錫與銀基材之界面反應..........................................68 3-4-3 Sn-Zn-0.5Al銲錫與銀基材之界面反應.....................................76 3-4-4 Sn-Zn-0.5Ga與Sn-8Zn-3Bi銲錫與銅、銀基材之界面反應.....................80 3-4-5 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銀基材之界面反應.........................86 3-4-6 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銅基材之界面反應.........................94 3-5介金屬化合物於固-液反應時之成長動力行為..................................99 3-5-1 Ag-Zn介金屬化合物於界面之成長動力行為.................................99 3-5-2 Cu-Zn介金屬化合物於界面之成長動力行為.................................104 3-6錫鋅系銲錫與銀基材之固-固界面反應與分析..................................109 3-6-1 純Sn與銀基材之界面反應................................................109 3-6-2 錫鋅系銲錫與銀基材之界面反應..........................................109 第肆章、結論................................................................116 參考文獻....................................................................118 致謝........................................................................127 自述........................................................................128 表目錄 表1-1 常見的無鉛銲錫........................................................3 表2-1 不同組成之錫鋅系銲錫合金 (wt %).......................................29 表2-2 蝕刻液之組成..........................................................33 表2-3 助熔劑之成分..........................................................35 表3-1 錫鋅系銲錫之熱性質....................................................53 表3-2介金屬化合物之莫耳生成自由能...........................................66 表3-3 Ag-Sn介金屬化合物生成之熱力學參數.....................................67 表3-4 圖3-31 (b)各點之EDS成份分析...........................................90 表3-5 圖3-34各點之EDS成份分析...............................................96 表3-6 Ag-Zn介金屬化合物於固-液反應時之成長動力學數據........................103 表3-7 Cu-Zn介金屬化合物於固-液反應時之成長動力學數據........................108 表3-8 圖3-44中各點之成份分析................................................112 圖目錄 圖1-1 A/B擴散偶與相圖示意圖 (a)反應前 (b)反應後,虛線代表B元素濃度的分佈 (c)A-B 二元平衡相圖................................................................12 圖1-2 介金屬化合物生成型態之示意圖 (a)固-固界面反應 (b)固-液界面反應........14 圖1-3 液滴在基材上受界面張力作用達平衡時之示意圖............................19 圖1-4 (a) 無助熔劑時 (b)有助熔劑時,熔融銲錫與基材間之表面張力示意圖........22 圖1-5銲錫性測試法 (a)將銲錫置於加熱磚上 (b)以線狀基材劈開熔融銲錫 (c)銲錫潤濕線狀基材........................................................................25 圖2-1 本研究之實驗流程圖....................................................28 圖2-2 潤濕天平儀器之示意圖..................................................36 圖2-3 典型潤濕曲線..........................................................38 圖3-1 錫鋅系銲錫合金之X光繞射分析...........................................41 圖3-2 Ag-Zn二元相圖.........................................................42 圖3-3 錫鋅鎵銲錫合金之X光繞射分析...........................................44 圖3-4錫鋅系銲錫合金OM顯微組織 (a)Sn-Zn-0.5Al (b)Sn-Zn-0.5Ag-0.1Al-0.5Ga (c)圖(b)之放大圖....................................................................45 圖3-5 Sn-9Zn銲錫合金顯微組織及元素分佈......................................46 圖3-6 Sn-Zn-Ga銲錫合金顯微組織 (a)Sn-Zn-0.25Ga (b)Sn-Zn-0.5Ga (c)Sn-Zn-1Ga..47 圖3-7 錫鋅系銲錫合金熱差掃描分析(DSC)實驗結果曲線圖 (a) Sn-Zn-0.5Al (b) Sn-Zn-0.5Ag-0.1Al-0.5Ga ....................................................49 圖3-8 錫鋅系銲錫合金熱差掃描分析(DSC)實驗結果曲線圖 (a)Sn-Zn-0.25Ga (b)Sn-Zn-0.5Ga (c)Sn-Zn-1Ga.................................................50 圖3-9 Sn-Zn二元相圖.........................................................51 圖3-10 不同銲錫合金對銅、銀基材於250℃之潤濕時間............................55 圖3-11 Sn-Zn-XGa(X = 0~1)與Sn-8Zn-3Bi銲錫合金對銅、銀基材於250℃之潤濕時間57 圖3-12 不同銲錫合金對銅、銀基材於250℃之最大潤濕力..........................60 圖3-13 Sn-Zn-XGa(X = 0~1)與Sn-8Zn-3Bi銲錫合金對銅、銀基材於250℃之最大潤濕力 ............................................................................61 圖3-14 純Sn與銀基材於250℃反應15秒之界面型態................................64 圖3-15 Ag-Sn二元相圖........................................................65 圖3-16 Sn-9Zn銲錫與銀基材於250℃反應15秒之反應型態 (b)為(a)的界面放大圖.....69 圖3-17 Sn-9Zn銲錫與銀基材於250℃反應15秒之界面元素線掃描分析 (a)界面型態 (b)Sn、Ag與Zn元素之分佈情形........................................................70 圖3-18 Sn-9Zn銲錫與銀基材於250℃反應15秒之界面元素面掃描分析................71 圖3-19 Sn-9Zn與銀基材於250℃反應3分鐘之界面介金屬化合物鑑定 (a)界面型態 (b)X光繞射分析......................................................................73 圖3-20 Sn-4.5Zn銲錫與銀基材於250℃反應15秒之反應界面型態....................75 圖3-21 Sn-Zn-0.5Al銲錫與銀基材於250℃反應15秒之界面元素線掃描分析 (a)界面型態 (b)Sn、Ag、Zn與Al元素之分佈情形................................................77 圖3-22 Sn-Zn-0.5Al銲錫與銀基材於250℃反應15秒之界面元素面掃描分析...........78 圖3-23 Sn-Zn-0.5Al銲錫與銀基材於250℃反應3分鐘之界面X光繞射分析.............79 圖3-24 Sn-Zn-0.5Ga銲錫與銅基材於250℃反應15秒之界面元素線掃描分析 (a)界面型態 (b)Sn、Cu、Zn與Ga元素之分佈情形................................................81 圖3-25 Sn-8Zn-3Bi銲錫與銅基材於250℃反應15秒之界面元素線掃描分析 (a)界面型態 (b)Sn、Cu、Zn與Bi元素之分佈情形................................................82 圖3-26 Sn-Zn-0.5Ga銲錫與銀基材於250℃反應15秒之界面元素線掃描分析 (a)界面型態 (b)Sn、Ag、Zn與Ga元素之分佈情形................................................83 圖3-27 Sn-8Zn-3Bi銲錫與銀基材於250℃下反應15秒之界面元素線掃描分析 (a)界面型態 (b)Sn、Ag、Zn與Bi元素之分佈情形.............................................84 圖3-28 Sn-Zn-0.5Ga銲錫與銀基材於250℃反應15秒之界面元素面掃描分析...........85 圖3-29 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銀基材於250℃反應15秒之界面型態.........87 圖3-30 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銀基材於250℃反應15秒之界面元素面掃描分析88 圖3-31 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銀基材於250℃反應3分鐘之界面型態 (b)為(a)的放大圖........................................................................89 圖3-32 Sn-Zn-0.5Ag-0.1Al-0.5Ga與銀基材於250℃反應3分鐘之界面介金屬化合物X光繞射分析..........................................................................91 圖3-33 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銀基材之界面反應示意圖..................93 圖3-34 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銅基材於250下反應15秒之界面型態.........95 圖3-35 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銅基材於250℃反應15秒之界面元素線掃描分析 (a)界面型態 (b)Sn、Ag、Zn與Cu元素之分佈情形....................................97 圖3-36 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銅基材於250℃反應3分鐘之界面介金屬化合物鑑定 (a)界面型態 (b)X光繞射分析..................................................98 圖3-37 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銀基材於不同反應條件下之界面型態 (a)220℃,1分鐘 (b)220℃,10分鐘 (c)250℃,3分鐘 (d)250℃,10分鐘 (e)280℃,3分鐘 (f)280℃,10分鐘......................................................................100 圖3-38 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銀基材於280℃,反應20分鐘 (a)界面型態 (b)界面元素分佈....................................................................101 圖3-39 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銀基材於不同反應溫度下,其界面介金屬化合物之厚度變化 (a)220℃ (b)250℃ (c)280℃.........................................102 圖3-40 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銅基材於不同反應條件下之界面型態 (a)220℃,10分鐘 (b)220℃,20分鐘 (c)250℃,3分鐘 (d)250℃,10分鐘 (e)280℃,10分鐘 (f)280℃,20分鐘...............................................................105 圖3-41 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銅基材於280℃,反應20分鐘 (a)界面型態 (b)界面元素分佈....................................................................106 圖3-42 Sn-Zn-0.5Ag-0.1Al-0.5Ga銲錫與銅基材於不同反應溫度下,其界面Cu-Zn介金屬化合物之厚度變化 (a)220℃ (b)250℃ (c)280℃.....................................107 圖3-43 Sn與銀基材於150℃,不同時效時間之界面型態 (a)200小時 (b)1000小時.....110 圖3-44 Sn-9Zn與銀基材於150℃,不同時效時間之界面型態 (a)、(b)時效200小時 (c)、(d)時效600小時 (e)、(f)時效1000小時............................................111 圖3-45 Sn-Zn-0.5Al與銀基材於150℃,不同時效時間之界面型態 (a)時效200小時 (b)時效600小時 (c)(d)時效1000小時..................................................114 圖3-46 Sn-Zn-0.5Ag-0.1Al-0.5Ga與銀基材於150℃,不同時效時間之界面型態 (a)時效200小時 (b)時效600小時 (c)為圖(b)之部份放大 (d)時效1000小時....................115

    1. R.R. Tummala and E.J. Rymaszewski, Microelectronics Packaging Handbook, New York, Van Nostrand Reihold, 1989, p.3.
    2. R.R. Tummala and E.J. Rymaszewski, Microelectronics Packaging Handbook, New York, Van Nostrand Reihold, 2nd.edition, 1997, p.13.
    3. M. R. Pinnel and W. H. Knausenberger, “Interconnection System Requirements and Modeling”, AT&T Tech. Journal, Vol. 66, No. 4, 1987, pp. 45-56.
    4. J. H. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York, USA, 1994, Chap. 1.
    5. J. H. Lau, Ball Grid Array Technology, McGraw-Hill, New York, USA, 1995, Chap. 1
    6. N. Sherwani, Q. Yu, and S. Badida, Introduction to Multichip Modules, Wiley, New York, USA, 1995, Chap. 1
    7. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, 1996, Chap. 14.
    8. Z. Miric and A. Grusd, Soldering & Surface Mount Technology,”Lead-free alloys”, Vol. 10, 1998, pp.19.
    9. T. Takemoto and M. Miyazaki,” Effect of excess temperature above liquidus of lead-free solders on wetting time in a wetting balance test”, Material Transaction, Vol. 42, No. 5, 2001, pp.745-750.
    10. 詹益淇, 莊東漢, “無鉛銲錫的回顧與最新發展”, 電子月刊, 6, 2000, pp. 226-237.
    11. M. E. Loomans, S. Vaynman, G. Ghosh and M. E. Fine, “Investigation of Multi-Component Lead-free Solders”, J. Electron. Mater., Vol. 23, No. 8, 1994, pp.741-746.
    12. M. McCormack and S. Jin, “Improved Mechanical Properties in New, Pb-free Solder Alloys”, J. Electron. Mater., Vol. 23, No. 8, 1994, pp. 715-720.
    13. E. P. Wood and K. L. Nimmo, “In search of new lead-free electronic solders”, J. Electron. Mater., Vol. 23, No. 8, 1994, pp. 709-713.
    14. M. McCormack, S. Jin, H. S. Chen and D. A. Machusak, “New Lead-free, Sn-Zn-In Solder Alloys”, J. Electron. Mater., Vol. 23, No. 7 , 1994, pp. 687-690.
    15. F. Hua and J. Glazer, “Lead-free Solders for Electronic Assembly, Design and Reliability of Solders and Solder Interconnections”, in: Design and Reliability of Solders and Solder Interconections, R. K. Mahidhara, D. R. Frear, S. M. L. Sastry, K. L. Murty, W. L. Winterbottom (Eds.), The Minerals, Metals and Materials Society, 1997, pp. 65-74
    16. M. McCormack, I. Artaki, S. Jin, A. M. Jackson, D. M. Machusak, G. W. Kammlott and D. W. Finley, “Wave soldering with a low melting point Bi-Sn alloy: effects of soldering temperature and circuit board finishes”, J. Electron. Mater., Vol. 25, No. 7, 1996, pp.1128-1131.
    17. U. R. Kattner and W. J. Boettinger, “On the Sn-Bi-Ag Ternary Phase Diagram”, J. Electron. Mater., Vol. 23, No. 7, 1994, pp. 603-610.
    18. K. Seelig, “A Study of Lead-free Solder Alloys”, Circuits Assembly, Vol. 6, No. 10, 1995, pp. 46-48.
    19. P. M. Hamsen, R. P. Elliott and F. A. Shunk, “Constitution of Binary Alloys”, McGraw-Hill, New York, 1958
    20. C. M. Miller, I. E. Anderson and J.F. Smith, “A Viable Tin-Lead Solder Substitute: Sn-Ag-Cu”, J. Electron. Mater., Vol. 23, No. 7 , 1994, pp. 595-601.
    21. M. McCormack and S. Jin, “New, Pb-free Solder Alloys”, J. Electron. Mater., Vol. 23, No. 8, 1994, pp. 635-640.
    22. N.C. Lee, “Getting Reading for Lead-free Solder”, Soldering & Surface Mount Technology, Vol. 9, 1997 , pp.65-69.
    23. J. Glazer , “Metallurgy of Low Temperature Pb-free Solders for Electronic Assembly”, International Materials Reviews, Vol. 40, No.2, 1995, pp.65-93.
    24. W. J. Tomlinson and A. Fullylove, “Strength of Tin-based Soldered Joints”, Journal of Materials Science, 27, 1992, pp. 5777-5782.
    25. M. McCormack, S. Jin, G. W. Kammlott and H. S. Chen, “New Pb-ferr solder alloy with superior mechanical properties”, Appl. Phys. Lett., Vol. 63, 1993, pp.15-71.
    26. D. R. Flanders, E. G. Jacobs, and R.F. Pinizzotto, “Activation Energies of Intermetallic Growth of Sn-Ag Eutectic Solder on Copper Substrates”, J. Electron. Mater., vol.26, No.7, 1997 pp.883-887.
    27. S. K. Kang and A. K. Sarkhel, “Lead-free Solders for Electronic Packaging”, J. Electron. Mater., vol. 23,No.8, 1994, pp. 701-707.
    28. A.D. Romig Jr., F.G. Yost and P.F. Hlava,”Intermetallic Layer Growth in Cu/Sn-In Solder Joints”, Microbeam Analysis, 1984, pp.87-92.
    29. I. Shohji, S. Fujiwara, S. Kiyono and K.F. Kobayashi, “Intermetallic Compound Layer Formation Between Au and In-48Sn Solder”, Scripta Materialia, Vol. 40, No. 7, 1999, pp.815-820.
    30. K. L. Lin and C. J. Chen, “The Interactions between In-Sn Solders and an Electroless Ni-P Deposit Upon Heat Treatment”, Journal of Materials Science: Materials in Electronics ,Vol. 7, 1996, pp.397-401.
    31. S. Jin, “Developing Lead-Free Solders: A Challenge and Opportunity “, JOM, Vol. 45, No. 7, July 1993, p. 13
    32. Y. G. Lee and J. G. Duh, “Phase Analysis in The Solder Joint of Sn-Cu Solder/IMCs/Cu Substrate”, Elsevier Science Inc., 1999, pp.143-160.
    33. K. Suganuma, K. Niihara, T. Shoutoku and Y. Nakamura,” Wetting and interfac microstructure between Sn-Zn binary alloys and Cu”, Journal of Material Research, vol. 13, No. 10, 1998, pp. 2859-2865.
    34. R. R. Tummala, E. J. Rymaszewski and A. G. Klopfenstein, “Microelectronics Packaging Handbook”, Chapman, 1997.
    35. M. Hirata, H. Noguchi and H. Yoshida, Matsushita Technical Journal, 45(3), June 1999, pp.82-87.
    36. P. Harris, “Interfacial reactions of tin-zinc-bismuth alloys”, Soldering & Surface Mount Technology, Vol. 11, 1999, pp. 46-52.
    37. M. McCormack, S. Jin, G.W. Kammlott, and H.S. Chen, “New Pb-free solder alloy with superior mechanical properties”, Appl. Phys. Lett., Vol. 63, No. 1, 5 July 1993, pp.15-17.
    38. J. M. Song, G. F. Lan, T. S. Lui, and L. H. Chen,”Microstructure and tensile properties of Sn-9Zn-xAg lead-free solder alloys”, Scripta Mater., vol. 48, 2003,pp. 1047-1051.
    39. T. Taketomo, T. Funaki and A. Matsunawa, Quarterly Journal of the Japan Welding Society, 17(2), 1999, pp.251-258.
    40. S. C. Cheng and K. L. Lin,”The thermal property of lead-free Sn-8.55Zn-1Ag-XAl solder alloys and their wetting interaction”, J. Electron. Mater., Vol.31, No. 9, 2002, pp.940-945
    41. A. Sebaoun, D. Vincent and D.Treheux,”Al-Zn-Sn phase diagram-isothermal diffusion in ternary system”, Materials Science and Technology, Vol.3, April 1987, pp.241-248.
    42. K. L. Lin. and T. P. Liu,”The electrochemical corrosion behavior of Pb-free Al-Zn-Sn solders in NaCl solution”, Mater. Chem. Phys., Vol. 56, 1998, pp.171-176.
    43. K. L. Lin. and T. P. Liu,”High temperature oxidation of a Sn-Zn-Al solder”, Oxid. Met., 50, 1998, pp.255.
    44. 游善溥, 錫鋅系無鉛銲錫與銅基材附著性與界面反應之研究, 國立成功大學材料科學與工程研究所博士論文,民國89年.
    45. K. I. Chen and K. L. Lin,” The microstructure and mechanical properties of the Sn-Zn-Ag-Al-Ga solder alloys-the effect of Ag”, J. Electron. Mater. Vol. 31, 2002, pp.861-867.
    46. 顏怡文, 銀-錫/銅與銀-錫/金系統之相平衡與界面反應的研究, 國立清華大學化學工程學系博士論文, 民國91年
    47. K. N. Tu, “Cu/Sn Interfacial Reactions: Thin-Film Case Versus Bulk Case”,Mat. Chem. and Phys., Vol. 46, 1996, pp. 217-223
    48. S. Bader, W. Gust, and H. Hieber, “Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Systems”, Acta Metall. Mater., Vol. 43, 1995, pp.329-337
    49. H. T. Lee, M. H. Chen,”Influence of intermetallic compounds on the adhesive strength of solder joints”, Materials Science and Engineering A333, 2000, pp.24-34.
    50. S. Sommadossi, W. Gust, E. J. Mittemeijer, “Characterization of the reaction process in diffusion-soldered Cu/In-48 at% Sn/Cu joints”, Materials Chemistry and Physics, Vol. 77, 2002, pp.924-929
    51. A. Hayashi , C. R. kao, and Y. A. Chang, ”Reactions of Solid Copper with Pure Liquid Tin and Liquid Tin Saturated with Copper”, Scripta Materialia, Vol.37, No.4,1997, pp393-398.
    52. S. K. Kang and V. Ramachandran, “Growth Kinetics of Intermetallic Phases at the Liquid Sn and Solid Ni Interface” Scripta Metallurgica, Vol.14, 1980, pp421- 424.
    53. S. W. Yoon, W. K. Choi and H. M. Lee, “Calculation of Surface Tension and Wetting Properties of Sn-Based Solder alloys”, Scripta Materialia, Vol. 40, No. 3, Jan. 1999, pp. 297-302.
    54. G. Leonida, “Handbook of Printed Circuit Design, Manufacture, Components & Assembly”, Ayr, Scotland, Chap.5-6, 1981.
    55. H.Y. Chang, S.W. Chen, S.H. Wong and H.F. Hsu, ” J. Mater. Res.,” Vol. 18, No. 6, 2003, pp. 1420-1428.
    56. G. Leonida, “Handbook of Printed Circuit Design, Manufacture, Components & Assembly,” Ayr, Scotland, Chap.5-6, 1981.
    57. H. H. Manko, “Solders and Soldering”, Second Edition, McGraw-Hill Book Company, Chap.2-4, 1979.
    58. F. G. Yost, F. M. Hosking and D. R. Frear, “The Mechanics of Solder Alloy Wetting and Spreading”, Van Nostrand Reinhold, New York, 1993
    59. J. H. Lau,“Solder Joint Reliability-Theory and Application”, Van Nostrand Reinhold, New York, 1991
    60. X. H. Wang and H. Conrad, “Kinetics of Wetting Ag Substrates by 60Sn40Pb”, Scripta Metallurgica et Materialla, 30, 1994, pp. 725-730.
    61. T. Kawanoble, K. Miyamuto, Y. Inabe and H. Okudaira, IEEE 31th Elec. Comp. Conf., 1981, pp. 149-155.
    62. Y. T. Huang and T. H. Chuang,”Interfacial reactions between liquid In-49Sn solders and Ag substrates”, Z. Metallkd. 12, 91, 2000, pp. 1002-1005.
    63. 汪建民, 材料分析, 民國九十年, 中國材料學學會, Chap.20.
    64. 陳俊仁, 銦錫銲錫與無電鍍鎳銅磷之潤濕行為和界面反應, 國立成功大學材料科學與工程研究所碩士論文,民國85年.
    65. 施嘉玲, 錫鋅銀無鉛銲錫與銅基材之潤濕行為, 國立成功大學材料科學與工程研究所碩士論文,民國91年.
    66. R. Hultgren, P. D Desai, D. T. Hawkins, M. Gleioser, and K. K. Kelley, Selected Values of Thermodynamic Properties of Binary Alloys (Metals Park, OH: ASM, 1973), pp.115-121
    67. J.M. Song, N.S. Liu and K.L. Lin,” Microstructure, thermal and tensile properties of Sn-Zn-Ga alloys”, Material Transactions, vol. 45, 2004, pp. 776-782.
    68. J. F. Shackelford,” Introduction toMaterials Science for Engineering”, Macmillan, New York, 1988, pp. 690
    69. K. L. Lin, L. H. Wen and T. P. Liu,”The microstructure of the Sn-Zn-Al solder alloys”, J. Electron. Mater., Vol. 27, No.3, 1998, pp.97-105.
    70. R. Hultgren, P. D Desai, D. T. Hawkins, M. Gleioser, and K. K. Kelley, Selected Values of Thermodynamic Properties of Binary Alloys (Metals Park, OH: ASM, 1973), pp. 1333-1336
    71. K. L. Lin and C. L. Shih,” Wetting interaction between Sn-Zn-Ag solders and Cu”, J. Electron. Mater., vol.32, No.2, 2003, pp. 95-100.
    72. N. S. Liu and K. L. Lin, unpublished
    73. R. Hultgren, P. D Desai, D. T. Hawkins, M. Gleioser, and K. K. Kelley, Selected Values of Thermodynamic Properties of Binary Alloys (Metals Park, OH: ASM, 1973), pp.106-111
    74. K. L. Lin and H. M. Hsu,” Sn-Zn-Al Pb-free solder-An inherent barrier solder for Cu contact”, J. Electron. Mater., Vol. 30, No. 9, 2001, pp.1068-1072.
    75. C. H. Yu and K. L. Lin, unpublished
    76. J.M. Song and K. L. Lin, unpublished

    下載圖示 校內:立即公開
    校外:2004-07-09公開
    QR CODE