| 研究生: |
許朝翔 Hsu, Chao-Hsiang |
|---|---|
| 論文名稱: |
微奈米壓印在三維立體結構及其在有機發光元件應用之研究 Study of Micro/Nano-imprint apply on 3-D structure and Organic Light Emitting Displays |
| 指導教授: |
方冠榮
Fung, K. Z. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 電鍍 、有機發光元件 、光微影蝕刻 、壓印 |
| 外文關鍵詞: | photolithography, imprint, OLED, CNP |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓印蝕刻技術具有製程簡單、成本低、產量高的優勢。尤其不受到
光源波長的限制,可以製作解析度小於100nm以下的線路圖案,是一種極
具有潛力的半導體製程技術。另外,對於傳統光學微影而言,即使是輕
微的曲面,因為聚焦深度的不足,無法有效進行圖案的轉移製程步驟。
因此有關曲面及非平整表面上的圖案製作,一直是傳統微影蝕刻無法克
服的障礙。但對於壓印蝕刻製程而言,由於是採取接觸的方式進行圖案
化的步驟,因此對於非平整表面的圖案轉移步驟,無疑將是極佳的選擇。
本研究中利用微影蝕刻的方式成功的在矽晶片上製備深度 超過10
μm 的特定結構的非平整表面,利用壓印填平法時,在操作溫度120℃並
持溫持壓四小時後,因PMMA 高分子流動的特性將高分子填滿非平整面
達到平坦化的效果,以利進行第二層圖案之轉移。接著以不同的壓印方
式將第二層圖案轉印製以平坦化的基板上。再利用電化學沉積法即電鍍
法,以-0.06V 的定電壓狀態下電鍍3000 秒後,將深寬比為(深度:寬度=1:10)
的金屬銅線陣疊加在非平整的結構上,最後利用丙酮將壓印層及有機填
充層及疊加之高分子圖形去除。
最後再以不同的壓印製程順利完成陽極透明導電膜之圖形化,同時
以低溫壓印製程完成第二層高分子圖形, 最後成功的以有機發光顯示器
來說明壓印製程應用在光電元件上應用之潛力。
Imprint techniques have the advantages of easy fabrication, low cost and
high throughout. Especially, Imprint techniques do not forbid by the source of
light patterning the line scale under 100 nm, and it is a potential technique in
semi-conductor fabrication. For traditional photolithography, the slight curve
causes light scattering, the pattern do not transfer efficient. Therefore Imprint
techniques are the optical choice in patterning on non-flat surface.
Non-flat Si substrates with features of 10 µm (depth is 10 µm) were used.
The topography of Si was fabricated by photolithography and reactive ion
etching (RIE). Planarize non-flat substrate was coating PMMA on the PDMS
pad. Reversing non-flat substrate on the PDMS pad which coating PMMA at
120 in ℃ vacuum for 4 hr. After planarization, patterning on flat substrate use
different imprint process, and metal deposition on patterning twice substrate
use electroplate. The aspect ratio(the aspect ratio is a proportion of height and
weight) of metal matrix on non-flat substrates is about 0.1.
Finally, ITO cathode thin film patterning is fabricated by different
imprint technique. Fabricating OLED device by imprint lithography is
successful. Imprint lithography has a deep potential to develop.
1 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett.67, 3114
(1995)
2 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85(1996)
3 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B 14, 4129
(1996)
4 D. Eisert, W. Braun, S. Kuhn, J. Koeth, and A. Forchel, Microelectron. Eng.
46, 179(2001)
5 S. Zankovych, T. Hoffmann, J. Seekamp, J. -U. Bruch, and C. M. S. Torres
Nanotechnology 12, 91(2001)
6 G. M. McClelland, M. W. Hart, C. T. Rettner, M. E. Best, K. R. Carter, and
Bruce D. Terris, Appl. Phys. Lett. 81, 1483(2002)
7 K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S.
Zankovych, C.M. S. Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius,
H. Schulz, H. -C. Scheer, and F. Steingrueber, Microelectron. Eng. 61-62, 393
(2002)
8 Y. Hirai, S. Harada, S. Isaka, M. Kobayashi, and Y. Tanaka, Jpn. J. Appl.
Phys. 41, 4186(2002)
9 Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka and M.
Kobayasi, J. Vac. Sci. Technol. B 20, 2867(2002)
10 P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S.
Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G.
Willson, J. Vac. Sci. Technol. B 17, 2965(1999)
11 T.C. Bailey, D.J. Resnick, D. Mancini, K.J. Nordquist, W.J. Dauksher, E.
Ainley, A. Talin, K. Gehoski, J.H. Baker, B.J. Choi, S. Johnson, M. Colburn,
M. Meissl, S.V. Sreenivasan, J.G. Ekerdt, and C.G. Willson, Microelectron.
Eng. 61-62, 461(2002)
12 W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A.
E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G.
Ekerdt, and C. G. Willson, J. Vac. Sci. Technol. B 20, 2857(2002)
13 M. Komuro, Y. Tokano, J. Taniguchi, T. Kawasaki, I. Miyamoto, and H.
Hiroshima, Jpn. J. Appl. Phys. 41, 4182(2002)
14 T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V.
Sreenivasan, and C. G. Willson, J. Vac. Sci. Technol. B 18, 3572(2000)
15 M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, L.
Montelius, Microelectron. Eng. 61-62, 441(2002)
16 Y. Hirai, Y. Kanemaki, K. Murata, and Y. Tanaka, Jpn. J. Appl. Phys. 38,
7272(1999)
17 D. S. Macintyre, Y. Chen, D. Lim, and S. Thoms, J. Vac. Sci. Technol. B 19,
91
2797(2001)
18 T. Borzenko, M. Tormen, V. Hock, J. Liu, G. Schmidt, and L.W. Molenkamp,
Microelectron. Eng. 57-58, 389(2001)
19 A. Baba, M. Iwamoto, K. Tsubaki, and T. Asano, Jpn. J. Appl. Phys. 41,
4190(2002)
20 V. Grigaliunas, S. Tamulevicius, G. Niaura, V. Kopustinskas, A. Gudonyte,
D. Jucius, Physica E 16, 568(2003)
21 M.M. Alkaisi, W. Jayatissa, M. Konijn, Current Applied Physics 4, 111
(2004)
22 Z. Yu and S. Y. Chou, Nano Lett. 4, 341(2004)
23 P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S.
Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, C. G. Willson, J.
Vac. Sci. Technol. B 17, 2965(1999)
24 T. Morita, K. Watanabe, R. Kometani, K. Kanda, Y. Haruyama, T. Kaito, J.
-I. Fujita, M. Ishida, Y. Ochiai, T. Tajima, and S. Matsui, Jpn. J. Appl. Phys.
42, 3874(2003)
25 F. Gottschalch, T. Hoffmann, C. M. S. Torres, H. Schulzb, H. -C. Scheer,
Solid-State Electronics 43, 1079(1999)
26 D. -Y. Khang and H. H. Lee, Appl. Phys. Lett. 76, 2767(2000)
27 K. Pfeiffer, G. Bleidiessel, G. Gruetzner, H. Schulz, T. Hoffmann, H. -C.
Scheer, C. M. S. Torres, and J. Ahopelto, Microelectron. Eng. 46, 431(1999)
28 R.W. Jaszewski, H. Schift, B. Schnyder, A. Schneuwly, P. Groning,
Applied Surface Science 143, 301(1999)
29 K. Pfeiffer, M. Fink, G. Bleidiessel, G. Gruetzner, H. Schulz, H. -C. Scheer,
T. Hoffmann, C. M. S. Torres, F. Gaboriau, and Ch. Cardinaud,
Microelectron. Eng. 53, 411(2000)
30 L.J. Heyderman, H. Schift, C. David, J. Gobrecht, and T.
Schweizer,Microelectron. Eng. 54, 229(2000)
31 H. -C. Scheer and H. Schulz, Microelectron. Eng. 56, 311(2001)
32 D. Lyebyedyev, H. Schulz, H. -C. Scheer, K. Pfeiffer, Materials Science and
Eng. C 15, 241(2001)
33 A. Lebib, M. Natali, S.P. Li, E. Cambril, L. Manin, Y. Chen, H.M. Janssen,
and R.P. Sijbesma, Microelectron. Eng. 57-58, 411(2001)
34 S. Matsui, Y. Igaku, H. Ishigaki, J. Fujita, M. Ishida, Y. Ochiai, M. Komuro
and H. Hiroshima, J. Vac. Sci. Technol. B 19, 2801(2001)
35 Y. Hirai, M. Fujiwara, T. Okuno, Y. Tanaka, M. Endo, S. Irie, K. Nakagawa,
and M. Sasago, J. Vac. Sci. Technol. B 19, 2811(2001)
36 A. Lebib, Y. Chen, E. Cambril, P. Youinou, V. Studer, M. Natali, A. Pepin, H.
M. Janssen, and R.P. Sijbesma, Microelectron. Eng. 61-62, 371(2002)
92
37 C. Gourgon, C. Perret, and G. Micouin, Microelectron. Eng. 61-62, 385
(2002)
38 M. Sagnes, L. Malaquin, F. Carcenac, C. Vieu, and C. Fournier,
Microelectron. Eng. 61-62, 429(2002)
39 S. Park, C. Padeste, H. Schift, and Jens Gobrecht, Microelectron. Eng.
67-68, 252(2003)
40 K. Pfeiffer, F. Reuther, M. Fink, G. Gruetzner, P. Carlberg, I. Maximov, L.
Montelius, J. Seekamp, S. Zankovych, C. M. S. Torres, H. Schulz, H. -C.
Scheer, Microelectron. Eng. 67-68, 266(2003)
41 C. Gourgon, C. Perret, G. Micouin, F. Lazzarino, J. H. Tortai, O. Joubert, and
J. -P. E. Grolier, J. Vac. Sci. Technol. B 21, 98(2003)
42 C. Martin, L. Ressier, and J. P. Peyrade, Physica E 17, 523(2003)
43 G. Y. Jung, S. Ganapathiappan, X. Li, D. A. A. Ohlberg, D. L. Olynick, Y.
Chen, W. M. Tong, and R.S. Williams, Appl. Phys. A 78, 1169(2004)
44 H. Tan, A. Gilbertson, and S. Y. Chou, J. Vac. Sci. Technol. B 16, 3926
(1998)
45 D. -Y. Khang and Hong H. Lee, Appl. Phys. Lett. 75, 2599(2000)
46 H. Schulz, A. S. Korbes, H. -C. Sheer, and L. J. Balk, Microelectron. Eng.
53, 221(2000)
47 M. Bender, M. Otto, B. Hadam, B. Vartzov, B. Spangenberg, and H. Kurz,
Microelectron. Eng. 53, 233(2000)
48 D. -Y. Khang and Hong H. Lee, Appl. Phys. Lett. 76, 870(2000)
49 M. Otto, M. Bender, B. Hadam, B. Spangenberg, and H. Kurz,
Microelectron. Eng. 57-58, 361(2001)
50 L.J. Heyderman, H. Schift, C. David, B. Ketterer, M. A. D. Maur, and J.
Gobrecht, Microelectron. Eng. 57-58, 375(2001)
51 A. Lebib, Y. Chen, E. Cambril, P. Youinou, V. Studer, M. Natali, A. Pepin,
H.M. Janssen, R.P. Sijbesma, Microelectron. Eng. 61-62, 371(2002)
52 M. Bender, M. Otto, B. Hadam, B. Vartzov, B. Spangenberg, and H. Kurz,
Microelectron. Eng. 61-62, 407(2002)
53 S. Y. Chou, C. Keimel, and J. Gu, Nature 417, 835(2002)
54 B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, and H. Kurz, J. Vac. Sci.
Technol. B 21, 2760(2003)
55 C. M. S. Torres, S. Zankovych, J. Seekamp, A.P. Kam, C. C. Cedeno, T.
Hoffmanna, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner,
M. V. Maximov, and B. Heidari, Materials Science and Eng. C 23, 23(2003)
56 T. Haatainen and J. Ahopelto, Physica Scripta 67, 357(2003)
57 Q. Xia, C. Keimel, H. Ge, Z. Yu, W. Wu, and S. Y. Chou, Appl. Phys. Lett.
83, 4417(2003)
58 L. Ressier, C. Martin, and J. P. Peyrade, Microelectron. Eng. 71, 272(2004)
59 G. Y. Jung, S. Ganapathiappan, X. Li, D. A. A. Ohlberg, D. L. Olynick, Y.
Chen, W. M. Tong and R. S. Williams, Appl. Phys. A 78, 1169(2004)
60 V. Grigaliunas, S. Tamulevicius, R. Tomasiunas, V. Kopustinskas, A.
Guobiene, and D.Jucius, Thin Solid Films 453-454, 13(2004)
61 D. -Y. Khang, H. Kang, T. -I. Kim, and H. H. Lee, Nano Lett. 4, 633(2004)
62 D. Pisignano, L. Persano, M. F. Raganato, P. Visconti, R. Cingolani, G.
Barbarella, L. Favaretto, and G. Gigli, Adv. Mater. 16, 525(2004)
63 D. Eisert, W. Braun, S. Kuhn, J. Koeth, and A. Forchel, Microelectron. Eng.
46, 179(1999)
64 L. J. Heyderman, H. Schift, C. David, B. Ketterer, M. A. D. Maur, and J.
Gobrecht, Microelectron. Eng. 57-58, 375(2001)
65 H. Schift, L. J. Heyderman, C. Padeste, and J. Gobrecht, Microelectron. Eng.
61-62, 375(2002)
66 J. Feng, B. Cui, Y. Zhan, and S. Y. Chou, Electrochemistry Communications
4,102(2002)
67 Y. Chen, D. S. Macintyre, and S. Thoms, Microelectron. Eng. 67-68, 245
(2003)
68 A. L. Bogdanov, T. Holmqvist, P. Jedrasik, and B. Nilsson, Microelectron.
Eng. 67-68, 381(2003)
69 Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, J. Vac. Sci. Technol. B
21,2089(2003)
70 P. Carlberg, M Graczyk, E. -L. Sarwe, I. Maximov, M. Beck, and L.
Montelius, Microelectron. Eng. 67-68, 203(2003)
71 Y. Hirai, K. Kanakugi, T. Yamaguchi, K. Yao, S. Kitagawa, and Y. Tanaka,
Microelectron. Eng. 67-68, 237(2003)
72 H. Schulz, M. Wissen, and H. -C. Scheer, Microelectron. Eng. 67-68, 657
(2003)
73 P. S. Hong and H. H. Lee, Appl. Phys. Lett. 83, 2441(2003)
74 L. J. Guo, P. R. Krauss, and S. Y. Chou, Appl. Phys. Lett. 71, 1881(1997)
75 J. Wang, X. Sun, L. Chen, and S. Y. Chou, Appl. Phys. Lett. 75, 2767(1999)
76 Y. Chen, A. Lebib, S.P. Li, M. Natali, D. Peyrade, and E. Cambril,
Microelectron. Eng. 57-58, 405(2001)
77 X. Cheng, Y. Hong, J. Kanicki, and L. J. Guo, J. Vac. Sci. Technol. B 20,
2877(2002)
78 Y. Takagaki, E. Wiebicke, H. Kostial, and K. H. Ploog, Nanotechnology 13,
15(2002)
79 C. Y. Chao and L. J. Guo, J. Vac. Sci. Technol. B 20, 2862(2002)
80 M. D. Austin and S. Y. Chou, Appl. Phys. Lett. 81, 4431(2002)
94
81 J. Seekamp, S. Zankovych, A. H. Helfer, P. Maury, C. M. S. Torres, G.
Bottger, C. Liguda, M. Eich, B. Heidari, L. Montelius, and J. Ahopelto,
Nanotechnology 13, 581(2002)
82 H. Cao, J. O. Tegenfeldt, R. H. Austin, and S. Y. Chou, Appl. Phys. Lett. 81,
3058(2002)
83 W. Zhang and S. Y. Chou, Appl. Phys. Lett. 83, 1632(2003)
84 T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L.
Samuelson, Nano Lett. 4, 699(2004)
85 A. Kumar and G. M. Whitesides, Appl. Phys. Lett. 63, 2002(1993)
86 M.M. Alkaisi*, R.J. Blaikie, S.J. McNab ,Microelectronic Engineering
57-58(2001)367-373
87 X. Cheng and L. J. Guo, Microelectron. Eng. 71, 277(2004)
88 X. Cheng and L. J. Guo, Microelectron. Eng. 70, 288(2004)
89 L.R.Bao, X.Cheng, X.D.Huang L.J.Guo,and S.W.Pang, A.F.Lee,
J.Vac.Sci.Technol. B 20(6),Nov/Dec 2002