簡易檢索 / 詳目顯示

研究生: 曾宇君
Tseng, Yu-Jun
論文名稱: 於單水鋁石漿料系統中合成之CexZr1-xO2(x=0.6)固溶(粒)體之晶徑與釋氧能力之關係
Relationship between crystallite size and oxygen-release capability of CexZr1-xO2(x=0.6) synthesized in boehmite slurry systems
指導教授: 黃啟原
Huang, Chi-Yuen
共同指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 67
中文關鍵詞: 單水鋁石含浸法氧化鋁
外文關鍵詞: CexZr1-xO2, ACZ, impregnation, boehmite
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CexZr1-xO2(1>x>0,簡稱CZ)的固溶體是汽車觸媒轉換器中常見的助(促)催化添加劑(promoter)材料,是為改良氧化鈰(ceria,CeO2)之耐熱性及釋氧能力而添加Zr離子於CeO2結構中之儲氧性材料(oxygen storage capacity, OSC)。而因Ce、Zr離子兩者的半徑差異,以及常溫常壓下氧化物的結構差異,使CZ固溶相系統呈現熱力學介穩態,受熱及能量即可能造成相分離及影響儲氧性。
    以γ-Al2O3為載體夾帶CZ微粒之複合粉末材料(簡稱A/CZ),可進一步改善CZ儲/釋氧功能及熱穩定性,並可兼具高比表面積特性。製作此一粉末,目前研究以濕化學法為主流,因其可製得高均勻度且粒徑小、分布窄之成品。
    本研究使用初濕含浸法(incipient-wetness impregnation) 合成CexZr1-xO2 (x=0.6)固溶體。採用不同Al2O3 (單水鋁石):CexZr1-xO2配比之漿料,觀察熱處理後A/CZ複合材料之CZ以及Al2O3互相作用之結果。研究結果顯示A與CZ混合比例會影響生成之CZ固溶比(Ce:Zr),Al2O3比例越高則CZ固溶之比例(Ce:Zr)越趨近6:4。而對於熱穩定性的影響則是,當Al2O3(A):CexZr1-xO2(CZ)配比中之Al2O3比例高於或低於60%都會發生相分離。若以球形混合配位數模型,來探討A:CZ混合比例對CZ晶徑變化及熱穩定性之影響,可發現Al2O3比例低於70%時,CZ粒子有較大機率互相接觸,導致CZ晶粒較高機會粗化,因此也較易產生相分離。Al2O3比例高於70%時,則會因為Al2O3比例較高導致CZ被Al2O3阻擋而不易擴散成長,因此CZ晶粒不易粗化,而Zr離子因半徑小較不受Al2O3限制,因此在低溫即有Zr-rich相產生。
    釋氧能力則與CZ中之Ce-rich晶粒之相對生成量,及其晶徑大小有關,從結果顯示當Ce-rich固溶體(CexZr1-xO2,0.75≧x≧0.6)之相對生成量越多,則釋氧能力較高,不過隨晶粒成長越大則釋氧能力會隨之下降。

    SUMMARY

    CexZr1-xO2 (1>x>0, CZ) solid solution is an oxygen storage capacity (OSC) material which can be applied in three-way catalysts to promote emission conversion efficiency in gasoline-fuelled automobiles and motorcycles. But, CZ appeared OSC deteriorated after high temperature treatments, it often refers to the phase separation and sizes growth of CZ.

    In this research, we observe the CZ particles growth in boehmite slurry by using the incipi-ent-wetness impregnation in various Al2O3 : CZ proportions. We found that the Al2O3 propor-tions could affect Zr concentration in CZ and the sizes growth of CZ, that at A0.7/(CZ)0.3 can approach the target concentration. Furthermore, we investigated that the oxygen storage ca-pacity that affected by CZ sizes and Ce-rich relative capacity, and the thermal stability of CZ after durability tests.

    Key words: CexZr1-xO2, ACZ, impregnation, boehmite

    目錄 中文摘要 I Abstract III 誌謝 VIII 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1. 前言 1 1.2. 研究動機 2 1.3. 研究目的 3 第二章 理論基礎與前人研究 6 2.1. CZ系列相的分類及相圖 6 2.2. CZ的晶粒成長及相分離機制 10 2.3. CZ的氧化還原特性 10 2.3.1. CZ在還原氣氛下的還原反應 10 2.3.2. CZ的儲氧能力 11 2.4. 文獻中添加Al2O3對CZ的影響 18 第三章 研究方法及步驟 20 3.1. 實驗原料 20 3.2. 樣品製備 20 3.3. 特性分析 20 3.3.1. 粉末結晶相分析 20 3.3.2. 晶徑計算 25 3.3.3. 球型粒體混合模型分析 26 3.3.4. 儲/釋氧能力分析 30 3.3.5. 顯微外觀及成分分析 30 第四章 結果與討論 31 4.1. 改變A/(CZ)原料比例對CexZr1-xO2固溶比之影響 31 4.1.1. 結晶相觀察CZ固溶比變化 31 4.1.2. 不同Al2O3/CZ混合比例之顆粒配位數及包覆關係 31 4.1.3. A0.7/(CZ)0.3成分分析  32 4.2. 熱處理條件與CZ晶徑變化之關係 38 4.3. Ce-rich相對生成量及晶徑對釋氧能力之影響 38 4.4. 固溶體之熱穩定性觀察 43 第五章 結論 46 參考文獻 47 附錄A 52 附錄B 54 附錄C 65 附錄D 66

    1. The Open University, "The three-way catalytic converter," http://www.open.edu/openlearn/science-maths-technology/science/chemistry/the-three-way-catalytic-converter/content-section-1.2.1, (2011).
    2. G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, and H. K. Matralis, "A comparative study of Pt/gamma-Al2O3, Au/alpha-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen," Catalysis Today, 75[1-4] 157-67 (2002).
    3. J. Kaspar, P. Fornasiero, and M. Graziani, "Use of CeO2-based oxides in the three-way catalysis," Catalysis Today, 50[2] 285-98 (1999).
    4. M. Fernández-Garcı́a, A. Martı́nez-Arias, A. Iglesias-Juez, C. Belver, A. B. Hungrı́a, J. C. Conesa, and J. Soria, "Structural characteristics and redox behavior of CeO2–ZrO2/Al2O3 supports," Journal of Catalysis, 194[2] 385-92 (2000).
    5. A. Morikawa, T. Suzuki, T. Kanazawa, K. Kikuta, A. Suda, and H. Shinjo, "A new concept in high performance ceria–zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier," Applied Catalysis B: Environmental, 78[3-4] 210-21 (2008).
    6. Y. Madier, C. Descorme, A. M. Le Govic, and D. Duprez, "Oxygen mobility in CeO2 and CexZr(1-x)O2 compounds: Study by CO transient oxidation and O-18/O-16 isotopic exchange," Journal of Physical Chemistry B, 103[50] 10999-1006 (1999).
    7. Y. Bi, H. Xu, W. Li, and A. Goldbach, "Water-gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst," International Journal of Hydrogen Energy, 34[7] 2965-71 (2009).
    8. C.-C. Chuang, H.-I. Hsiang, C.-C. Chen, F.-S. Yen, and M. Yoshimura, "Phase separation phenomenon and mechanism of Ce0.6Zr0.4O2 powders prepared using chemical coprecipitation method," Journal of the American Ceramic Society, 96[5] 1629-34 (2013).
    9. R. Di Monte, P. Fornasiero, J. Kaspar, P. Rumori, G. Gubitosa, and M. Graziani, "Pd/Ce0.6Zr0.4O2/Al2O3 as advanced materials for three-way catalysts - Part 1. Catalyst characterisation, thermal stability and catalytic activity in the reduction of NO by CO," Applied Catalysis B-Environmental, 24[3-4] 157-67 (2000).
    10. P. Fornasiero, E. Fonda, R. Di Monte, G. Vlaic, J. Kaspar, and M. Graziani, "Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides," Journal of Catalysis, 187[1] 177-85 (1999).
    11. L. F. Liotta, A. Longo, A. Macaluso, A. Martorana, G. Pantaleo, A. M. Venezia, and G. Deganello, "Influence of the SMSI effect on the catalytic activity of a Pt(1%)/Ce0.6Zr0.4O2 catalyst: SAXS, XRD, XPS and TPR investigations," Applied Catalysis B-Environmental, 48[2] 133-49 (2004).
    12. P. Vidmar, P. Fornasiero, J. Kaspar, G. Gubitosa, and M. Graziani, "Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide," Journal of Catalysis, 171[1] 160-68 (1997).
    13. M. H. Yao, R. J. Baird, F. W. Kunz, and T. E. Hoost, "An XRD and TEM investigation of the structure of alumina-supported ceria-zirconia," Journal of Catalysis, 166[1] 67-74 (1997).
    14. R. Di Monte, P. Fornasiero, S. Desinan, J. Kaspar, J. M. Gatica, J. J. Calvino, and E. Fonda, "Thermal stabilization of CexZr1-xO2 oxygen storage promoters by addition of Al2O3: Effect of thermal aging on textural, structural, and morphological properties," Chem. Mat., 16[22] 4273-85 (2004).
    15. 莊佳哲,以化學共沉法合成Ce0.6Zr0.4O2粉末之相分離行為及其氧化還原特性,成功大學資源工程研究所,博士論文,2012。
    16. M. Yashima, K. Morimoto, N. Ishizawa, and M. Yoshimura, "Zirconia ceria solid-solution synthesis and the temperature time transformation diagram for the 1/1 composition," Journal of the American Ceramic Society, 76[7] 1745-50 (1993).
    17. M. Yashima, H. Takashina, M. Kakihana, and M. Yoshimura, "Low-temperature phase-equilibria by the flux method and the metastable-stable phase-diagram in the ZrO2-CeO2 system," Journal of the American Ceramic Society, 77[7] 1869-74 (1994).
    18. M. Yoshimura, E. Tani, and S. Somiya, "The confirmation of phase-equilibria in the system ZrO2-CeO2 below 1400-degrees-c," Solid State Ionics, 3-4[AUG] 477-81 (1981).
    19. E. Tani, M. Yoshimura, and S. Somiya, "Revised phase-diagram of the system ZrO2-CeO2 below 1400-degrees-c," Journal of the American Ceramic Society, 66[7] 506-10 (1983).
    20. P. Fornasiero, G. Balducci, R. DiMonte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero, and M. Graziani, "Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2," Journal of Catalysis, 164[1] 173-83 (1996).
    21. M. Yashima, H. Arashi, M. Kakihana, and M. Yoshimura, "Raman-scattering study of cubic-tetragonal phase-transition in Zr1-xCexO2 solid-solution," Journal of the American Ceramic Society, 77[4] 1067-71 (1994).
    22. R. D. Monte and J. Kaspar, "Nanostructured CeO2-ZrO2 mixed oxides," Journal of Materials Chemistry, 15[6] 633 (2005).
    23. M. Lin, Z. Y. Fu, H. R. Tan, J. P. Y. Tan, S. C. Ng, and E. Teo, "Hydrothermal synthesis of CeO2 nanocrystals: Ostwald ripening or oriented attachment?," Crystal Growth & Design, 12[6] 3296-303 (2012).
    24. J. Kaspar, P. Fornasiero, and N. Hickey, "Automotive catalytic converters: current status and some perspectives," Catalysis Today, 77[4] 419-49 (2003).
    25. 游佩青,類均質條件下奈米θ-Al2O3微粒之晶粒成長現象觀察,成功大學資源工程研究所,博士論文,2007。
    26. 張宏毅,二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性,成功大學化學工程研究所,博士論文,2005。
    27. T. Taniguchi, K.-i. Katsumata, S. Omata, K. Okada, and N. Matsushita, "Tuning growth modes of ceria-based nanocubes by a hydrothermal method," Crystal Growth & Design, 11[9] 3754-60 (2011).
    28. E. Mamontov, T. Egami, R. Brezny, M. Koranne, and S. Tyagi, "Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia," Journal of Physical Chemistry B, 104[47] 11110-16 (2000).
    29. P. Fornasiero, R. Dimonte, G. R. Rao, J. Kaspar, S. Meriani, A. Trovarelli, and M. Graziani, "RH-Loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers-dependence of the reduction behavior and the oxygen storage capacity on the structural-properties," Journal of Catalysis, 151[1] 168-77 (1995).
    30. A. Trovarelli, F. Zamar, J. Llorca, C. deLeitenburg, G. Dolcetti, and J. T. Kiss, "Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling - Analysis of low-temperature redox activity and oxygen storage capacity," Journal of Catalysis, 169[2] 490-502 (1997).
    31. R. Di Monte and J. Kaspar, "On the role of oxygen storage in three-way catalysis," Topics in Catalysis, 28[1-4] 47-57 (2004).
    32. T. M. Suzuki, A.; Suda, A.; Sobukawa, H.; Sugiura, M.; Kanazawa, T.; Suzuki, J.; Takada, T., "Alumina-ceria-zirconia composite oxide for three way catalyst," R&D Rev. Toyota CRDL 37 28-33 (2002).
    33. 洪辰宗,以不等粒徑次微米Y2O3、α-Al2O3粉末合成釔鋁石榴石之研究,成功大學資源工程研究所,博士論文,2012。

    下載圖示 校內:2017-02-16公開
    校外:2017-02-16公開
    QR CODE