| 研究生: |
黃泰維 Huang, Tai-Wei |
|---|---|
| 論文名稱: |
厭氣阻板反應器/上流式厭氣污泥床反應器處理養豬廢水 Treatment of piggery wastewater using anaerobic baffled reactors/upflow anaerobic sludge bed reactor |
| 指導教授: |
黃汝賢
Huang, Ju-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 厭氣阻板反應器 、養豬廢水 、動力模式 |
| 外文關鍵詞: | anaerobic baffled reactor, kinetic model, piggery wastewater |
| 相關次數: | 點閱:184 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
厭氣阻板反應器/上流式厭氣污泥床反應器處理養豬廢水
摘 要
本研究使用厭氣無阻板反應器(ANBR)、厭氣阻板反應器(ABR)、厭氣阻板(出流水迴流)反應器(ABRr)及上流式厭氣污泥床反應器(UASBR)處理養豬廢水(取自台糖虎山農場經固液分離機、兼氣塘(HRT = 2 d)處理後之廢水;進流COD濃度2,050~2,820 mg /L),在反應器體積5.15 L、體積負荷0.78~5.48 kg COD/m3-d、水力停留時間2.6~0.52 d之操作條件下,生物污泥量分別為12.4~53.4、14.4~73.5、14.3~72.0及14.5~73.3 g VSS,污泥顆粒平均粒徑(dp,avg;weighted mean)分別為0.81~1.31、0.92~1.46、1.05~1.61及1.05~1.75 mm,COD去除率分別為84~75%、91~92%、90~87%及91~93%。換言之,二種厭氣阻板反應器(ABR和ABRr)及UASBR之處理性能皆明顯優於厭氣無阻板反應器(ANBR)者;前者比後者有較多之生物量、較高之COD去除率及較大污泥顆粒粒徑。
高表面流速(us = 2 m/h)之厭氣反應器(ABRr與UASBR)的大粒徑所佔之百分比(% by volume)大致比低表面流速(us = 0.017~0.085 m/h) (ANBR與ABR)者高;四種厭氣反應器之dp,avg大致都隨著體積負荷之提高而有增大之趨勢;四種厭氣反應器之污泥顆粒粒徑以污泥床下層為最大,其次依序為污泥床中層、上層者。從厭氣反應器取出污泥顆粒混合液,並經由獨立批次實驗(30 ± 1℃)培養測得之甲烷菌分率(f)為0.27~0.70,且高體積負荷之f值有比低體積負荷低之趨勢。
根據追蹤劑試驗及延散數之計算,ANBR、ABRr及UASBR之液相流況皆趨近於完全混合,ABR之液相流況則趨近於栓塞流;ANBR、ABR、ABRr及UASBR之dead space分別為32.7~56.2%、8.5~37.4%、14.3~37.4%及9.2~(~0)%。
獨立批次實驗(30 ± 1℃)配合Levenberg-Marquardt algorithm非線性迴歸求得mixed culture降解COD之反應符合Monod型動力,其最大比基質利用速率常數(k)和半飽和常數(Ks)分別為0.41~1.29 mg COD/mg VSS-d和48~131 mg COD/L。另強化培養乙酸甲烷化反應亦符合Monod型動力,其動力常數k2和Ks2值分別為3.9 mg acetate/mg VSS-d和370 mg acetate/L。
藉由本研究提出之僅涵蓋液相之Model 1及涵蓋固相、液相之Model 2 (涵蓋有甲烷菌分率)模式計算,ANBR、ABR、ABRr及UASBR之COD (VFAs)濃度及COD (VFAs)去除率之模式模擬值皆與實驗值頗為吻合。因此,在工程應用(四種厭氣反應器之功能設計與操作管理)上,可使用模式計算步驟較為簡單之Model 1。
關鍵詞:厭氣阻板/無阻板反應器、上流式厭氣污泥床反應器、養豬廢水、處理性能評估、甲烷菌分率、動力模式、模式驗證。
Treatment of Piggery Wastewater Using Anaerobic Baffled Reactors/ Upflow Anaerobic Sludge Bed Reactor
ABSTRACT
Four anaerobic reactors including anaerobic non-baffled reactor (ANBR), anaerobic baffled reactor (ABR), ABR with effluent recycle (ABRr), and upflow anaerobic sludge bed reactor (UASBR) were used to treat piggery wastewater (i.e., pretreated by a solids-liquid separator followed by a facultative lagoon with an HRT of 2 days; chemical oxygen demand (COD) = 2,050 – 2,820 mg/L). At the reactor volume of 5.15 L, volumetric loading rates (VLRs) of 0.78 – 5.48 kg COD/m3-d, and hydraulic retention times of 2.6 – 0.52 d, the biomass of the ANBR, ABR, ABRr, and UASBR were 12.4 – 53.4, 14.4 – 73.5, 14.3 – 72.0, and 14.5 – 73.3 g VSS, respectively; the average diameter of granules (dp,avg, weighted mean) were 0.81 – 1.31, 0.92 – 1.46, 1.05 – 1.61, and 1.05 – 1.75 mm, respectively and; the COD removal efficiencies were 84 – 75%, 91 – 92%, 90 – 87%, and 91 – 93%, respectively. In other words, the performance of anaerobic baffled reactors (ABR and ABRr) and UASBR are superior to that of ANBR; the formal can retain more biomass, maintain higher COD removal efficiencies, and grow larger granules, compared with the latter.
Percentage (by volume) of large sizes of granules in the ABRr and UASBR with a higher superficial velocity (us = 2 m/h) was higher than that of large sizes of granules in the ANBR and ABR with a lower us (= 0.017~0.085 m/h). In the four anaerobic reactors, the dp,avg increased with an increase in VLR; the granule diameter (dp) in the lower-part of the sludge bed was the biggest, the dp in the middle-up of the sludge bed was the next and, the dp in the upper-part of the sludge bed was the smallest. From independent batch experiments (30 ± 1℃) using sludge granules removed from the four anaerobic reactors (VLRs = 0.78~5.48 kg COD/m3-d), the estimated mass fractions of methanogens ranged from 0.27 to 0.70; the f value decreased with an increase in VLR.
According to tracer tests and the calculated dispersion number, the flow regimes of the ANBR, ABRr, and UASBR were close to complete-mix, while the flow regime of the ABR was close to plug flow; dead spaces of the ANBR, ABR, ABRr, and UASBR were 32.7 – 56.2%, 8.5 – 37.4%, 14.3 – 37.4%, and 9.2 – (~0)%, respectively.
From independent batch experiments (30 ± 1℃) together with Levenberg- Marquardt algorithm (i.e., nonlinear regression), the anaerobic degradation of piggery wastewater (mixed culture) followed Monod-type kinetics with the maximum specific substrate utilization rate constant (k) of 0.41 – 1.29 mg COD/mg VSS-d and the half-saturation constant (Ks) of 48 – 131 mg COD/L. Acetate methanogenesis (enrichment culture) also followed Monod-type kinetics with the k2 of 3.9 mg acetate/mg VSS-d and the Ks of 370 mg acetate/L.
By using the proposed two kinetic models (i.e., Model 1 incorporating only liquid-phase model and f; Model 2 incorporating solid-phase and liquid-phase model and f), the simulated COD (VFAs) concentrations and COD (VFAs) removal efficiencies in the ANBR, ABR, ABRr, and UASBR were in good agreement with the experimental results. Accordingly, Model 1 (i.e., rather simple calculations) should be acceptable for function design and operation and management of the four anaerobic reactors.
Keywords: Anaerobic baffled/non-baffled reactors; Upflow anaerobic sludge bed reactor; Piggery wastewater; Performance evaluation; Mass fraction of methanogens; Kinetic model; Model verification.
曾四恭,1990。台灣省養豬廢水處理技術之研究。國立台灣大學環境工程研究所研究報告第238號,21-28。
曾四恭,1992。豬糞尿廢水中氮磷去除方法之研究。國立台灣大學環境工程研究所研究報告第310號,51。
洪嘉謨。1990。跨世紀養豬排泄/廢棄資源處理技術。台灣省畜產試驗所專輯第60號。
郭猛德、洪嘉謨、林財旺、蘇清全、徐彩煥、李啟忠、黃汝賢,1997。三段式養豬場廢水處理對87年環保指標之評估。八十六年度畜牧污染防治試驗研究計畫成果報告彙編。行政院農業委員會/畜產試驗所編印。
黃正義、吳松雄,1981。豬舍廢水處理實務。第七屆廢水處理技術研討會論文集,353-360。
蕭明謙,1992。生物木屑墊床養豬法應用於傳統豬舍之探討。國立成功大學環境工程研究所碩士論文,118-119。
Alphenaar P. A., Pérez M. C., van Berkel W. J. M. and Lettinga G. (1992) Determination of permeability and porosity of anaerobic sludge granule by size exclusion chromatography. Appl. Microbiol. Biotechnol. 36, 795-799.
Alphenaar P. A., Visser A. and Lettinga G. (1993) The effect of liquid upflow velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a hight sulphate content. Biores. Technol. 43, 249-258.
Andrews J. F. (1969) Dynamic model of the anaerobic degestion process. J. Sanitary Eng. Div. (ASCE). 95, 95-116.
APHA AWWA, WEF. (1995) Standard methods for the examination of water and wastewater. 19th ed., American Public Health Association, Washington, DC.
Bachmann A., Beard V. L. and McCarty P. L. (1985) Performance characteristics of the anaerobic baffled reactor. Wat. Res. 19 (1), 99-106.
Bailey J. E. and Ollis D. F. (1986) Biochemical engineering fundamentals. 2nd ed. McGraw-Hill, New York.
Barber W. P. and Stuckey D. C. (1999) The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review. Water Res. 33 (7), 1559-1578.
Barber W. P. and Stuckey D. C. (1998) Influence of start-up strategies on the performance of an anaerobic baffled reactor. Environ. Technol. 19, 489-501.
Beer W. J. and Gibbs D. F. (1975) Chemical flocculation as a tertiary treatment for pig effluent. Wat. Res. 9, 1047-1050.
Boopathy R., Larsen V. F. and Senior E. (1988) Performance of anaerobic baffled reactor (ABR) in treating distillery wastewater from a Scotch Whisky factory. Biomass 16 (2), 133-143.
Boopathy R. and Sievers D. M. (1991) Performance of a modified anaerocic baffled reactor to treat swine waste. Trans. ASAE 34 (6), 2573-2578.
Boopathy R. and Tilche A. (1991) Anaerobic digestion of high-strength molasses wastewater using a hybrid anaerobic baffled reactor. Water Res. 25 (7), 785-790.
Boopathy R. and Tilche A. (1992) Pelletization of biomass in a hybrid anaerobic baffled reactor (HABR) treating acidified wastewater. Biores. Technol. 40 (2), 101-107.
Boopathy R. (1998) Biological treatment of swine waste using anaerobic baffled reactor. Biores. Technol. 64, 1-6.
Boone D. R., Worakit S., Mathrani I. M. and Mathrani R. A. (1986) Alkaliphlic methanogens from high-pH lake sediments. J. Systematic Appl. Microbiol. 7, 230-234.
Bryant M. P., Wolin E. A., Wolin M. J. and Wolfe R. S. (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol. 59, 20-31
Chang Y. J., Nishio N. and Nagai S. (1995) Characteristics of granular methanogenic sludge growth on phenol synthetic medium and methanogenic fermention of phenolic wastewater in a UASB reactor. J. Ferm. Bioeng. 79 (4), 384-353.
Cintoli R., Disabatino B., Galeotti L. and Bruno G. (1995) Ammonium uptake by zeolite and treatment in UASB reator of piggery wastewater. Wat. Sci. Technol. 32 (12), 73-81.
Denac M., Miguel A. and Dunn, I. J. (1988) Modeling dynamic experiments on anaerobic degradation of molasses. Biotechnol. Bioeng. 31, 1-10.
Dirasian H. A., Molof A. H. and Borchardt J. A. (1963) Electrode potential in digestion. J. Water Pollut. Control Fed. 35, 424-437
Dudley B. T., Howgrave-Graham A. R., Bruton A. G. and Wallis, F. M. (1993) Image analysis to quantify and measure UASB digester granule. Biotechnol. Bioeng. 42, 83-90.
Edele D.G. (1973) Livestock waste management in a quality environment. Univ. of Illinois Unbana-Champaign.
Edwards T. and McBride B.C. (1975) New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol. Biotechnol. 29, 504-545.
Fang H. H. P., Chen T., Li Y. Y. and Chui H. K. (1996) Degradation of phenol in wastewater in an upflow anaerobic sludge blanket reactor. Wat. Res. 30 (6), 1353-1360.
Fang H. H. P., Chui H. K. and Li Y. Y. (1994) Microbial structure and activity of UASB granules treating different wastewaters. Wat. Sci. Tech. 30, 87-96.
Fang H. H. P., Chui H. K. and Li Y., Y. (1995a) Effect of degradation kinetics on the micro-structure of anaerobic biogranules. Wat. Sci. Tech. 32, 165-172.
Fang H. H. P., Chui H. K. and Li Y. Y. (1995b) Microstructural analysis of UASB granules treating brewery wastewater. Wat. Sci. Tech. 31, 165-172.
Fox P. and Venkatasubbiah V. (1996) Coupled anaerobic/aerobic treatment of high-sulphate wastewater with sulphate reduction and biological sulphide oxidation. Wat. Sci. Technol. 34 (5-6), 359-366.
Garuit G., Dohanyos M. and Tilche A. (1992) Anaerobic-aerobic combined process for the treatment of sewage with nutrient removal: The Ananox process. Wat. Sci. Technol. 25 (7), 383-394.
Gaudy A. F., Lowe W., Rozich A. F. and Colvin R. (1988) Practical methodology for predicting critical operation range of biological systems treating inhibitory substrates. J. Water Pollut. Control Fed. 60 (1), 77-85.
Grady C. P. L. (1990) Biodegradation of toxic organics: Status and potential. J. Environ. Eng. (ASCE) 116, 805-828.
Grobicki A. M. W. and Stuckey D.C. (1989) The role of formate in the anaerobic baffled reactor. Wat. Res. 23 (12), 1599-1602.
Grobicki A. M. W. and Stuckey D. C. (1991) Performance of the anaerobic baffled reactor under steady state and shock loading conditions. Biotechnol. Bioeng. 37, 344-355.
Grobicki A. M. W. and Stuckey D.C. (1992) Hydrodynamic characteristics of the anaerobic baffled reactor. Water Res. 26 (3), 371-378.
Grotenhuis J. T. C., Plugge C. M., Stams A. J. M. and Zehnder A. J. B. (1991a) Role of substrate concentration in particle size distribution of methanogenic granular in UASB reactors. Wat. Res. 25 (1), 21-27.
Grotenhuis J. T. C., Smit M., Plugge M., Yuansheng X., van Lammeren A. A. M., Stams A. J. M. and Zehnder A. J. B. (1991b) Bacteriological composition and structure of granular sludge adapted to different substrate. Appl. Environ. Microbiol. 57, 1942-1949.
Guiot S. R., Arcand Y. and Charie C. (1992a) Advantage of fluidization on granule size and activity development in upflow anaerobic sludge bed reactors. Wat. Sci. Tech. 26, 897-906.
Guiot S. R., Pauss A. and Costerton J. W. (1992b) A structured model of the anaerobic granule consortium. Wat. Sci. Tech. 25, 1-10.
Halwachs W. (1978) Km and Vmax from only one experiment. Biotechnol. Bioeng. 20, 281-285.
Han K. H. and Levenspiel O. (1988) Extended Monod kinetics for substrate. Biotechnol. Bioeng. 32, 430-437.
Harper S. R. and Pohiland F. G. (1986) Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnol. Bioeng. 28, 285-602.
Hayes T. D. and Theis T. L. (1978) The distribution of heavy metals in anaerobic digestion. J. Water Pollut. Control Fed. 50, 61-72.
Heertjes P. M. and Kuijvenhoven L. J. (1982) Fluid flow pattern in upflow reactors for anaerobic treatment of beet sugar factory wastewater. Biotechnol. Bioeng. 24 (2), 443-459.
Heertjes P. M. and van der Meer R. R. (1978) Dynamics of liquid flow in an upflow reactor used for anaerobic treatment of wastewater. Biotechnol. Bioeng. 20 (10), 1577-1594.
Henze M. and Harremoes P. (1983) Anaerobic treatment of wastewater in fixed film reactors. Wat. Sci. Tech. 15, 1-10.
Hilton M.G. and Archer D.B. (1988) Anaerobic digestion of a sulphate-rich molasses wastewater: Inhibition of hydrogen sulphide production. Biotechnol. Bioeng. 31, 885-888.
Huang J. C., Ray B. T. and Huang Y. J. (1989) Sludge digestion by anaerobic fludized beds. I. Lab performance data. J. Environ. Eng. (ASCE) 115, 291-304.
Jih C. G. and Huang J. S. (1994) Effect of biofilm thickness distribution on substrate-inhibited kinetics. Wat. Res. 28 (4), 967-973.
Jih C. G., Huang J. S. and Huang S. Y. (2003) Process kinetics of upflow anaerobic sludge bed reactors treating inhibitory substrate. Wat. Environ. Res. 75 (1), 5-14.
Kanekar P., Sarnaik S. and Kelkar A. (1996) Microbial technology for management of phenol bearing dyestuff wastewater. Wat. Sci. Technol. 24 (8), 1-16.
Kettunen R. H. and Rintala J. A. (1997) The effect of low temperature (5-29℃) and adaptation on the methanogenic activity of biomass. Appl. Microbiol. Biotechnol. 48, 570-576.
Kuan Y. S. and Joo H. T. (1999) Influence of support media on biomass growth and retention in anaerobic filters. Wat. Res. 33 (6), 1471-1481.
Kugelman I. J. and Chin K. K. (1971) Toxicity synergism and antaginism in anaerobic waste treatment process. American Chem. Society. 105, 55-90.
Kugelman I. J. and MaCarty P. L. (1965) Cation toxicity and stimulation in anaerobic waste treatment. J. Water Pollut. Control Fed. 37, 97-104.
Kumaran P. and Paruchuri Y. L. (1997) Kinetics of phenol biotransformation. Wat. Sci. Tech. 31, 11-22.
Langenhoff A. A. M. and Stuckey D. C. (2000) Treatment of dilute wastewater using an anaerobic baffled reactor: Effect of low temperature. Wat. Res. 34 (15), 3867-3875.
Lawrence A. W. and McCarty P. L. (1969) Kinetics of methane fermentation in anaerobic treatment. J. Wat. Pollut. Control Fed. 58 (1), 52-59.
Levenspiel O. (1972) Chemical reaction engineering, 2nd ed., Wiley, New York.
Lettinga G., Hobma S. W., Hulshoff Pol L. W., de Zeeuw W., de Jong P., Grin P. and Roersma R. (1982) Design operation and economy of anaerobic treatment. Wat. Sci. Tech. 15 (8), 175-195.
Lettinga G., van Velsen A. F. M., Hobma S. W., de Zeeuw W. and Klapwijk A. (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 22 (4), 699-734.
Lin C. Y. and Chen C. C. (1999) Effect of heavy methals on the methanogenic UASB granule. Wat. Res. 33 (2), 409-416.
Liu Y., Boone D. R. and Chay C. (1990) Methanohalophilis oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. International J. Systematic Bacteriol. 40, 111-116.
Macki R. I. and Bryant M. P. (1981) Metabolic activity of fatty acidoxidizing bactaeria and contribution of acetate, propinate, butyrate and CO2 to methanogenesis in cattle waste at 40 and 60℃. Appl. Envir. Microbiol. 41, 1363-1373.
MacLeod F. M., Guiot S. R. and Costerton J. W. (1990) Layered structure of bacterial aggregate produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56, 1598-1607.
Maestrojuan G. M. and Boone D. R. (1991) Characterization of Methanosarcina barkeri MST and Methanosarcina vacuolata Z-761T. International J. Systematic Bacteriol. 41, 267-274.
Malina J. F. and Pohland F. G. (1992) Design of anaerobic processes for the trearment of industrial and municipal wastes. Technomic Publishing Co., Washington DC.
McCarty P. L. (1964) Anaerobic waste treatment fundamentals, Part II- Environment requirements and control. Public Works. 95, 91-94.
Mitchell R. (1992) Environmental microbiology. Wiley, New York.
Morgan-Sagastume J. M., Jimenez B. and Noyola A. (1997) Trace studies in a laboratory and pilot-scale UASB reactor. Envir. Tech. 18, 817-825.
Nachaiyasit S. and Stuckey D. C. (1995) Microbial response to environmental changes in an anaerobic baffled reactor (ABR). Antonie van Leeuwenhoek 67, 111-123.
Nachaiyasit S. and Stuckey D. C. (1997a) The effect of low temperature on the performance of an anaerobic baffled reactor (ABR). J. Chem. Tech. Biotechnol. 69, 276-284
Nachaiyasit S and Stuckey D. C. (1997b) The effect of shock loads on the performance of an anaerobic baffled reactor (ABR), 1. Step changes in feed concentration at constant retention time. Wat. Res. 31 (11), 2737-2746.
Nachaiyasit S and Stuckey D. C. (1997c) The effect of shock loads on the performance of an anaerobic baffled reactor (ABR), 2. Step and transient hydraulic shocks at constant feed strength. Wat. Res. 31 (11), 2747-2755.
Nauman E. B. and Buffham B. A. (1983) Mixing in continuous flow system. Chap. 3, Wiley, New York.
Okaygun N. S. and Akgerman A. (1992) Microbial dynamics in a continuously stirred tank reactor with 100% cell recycle. Water Environ. Res. 64, 811-816.
Owen W. F., Stuckey D. C., Healy D. C., Young L. Y. and McCarty P. L. (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Wat. Res. 13, 485-492.
Parkin G. F. and Owen W. F. (1986) Fundamentals of anaerobic digestion of wastewaster sludges., J. Envir. Eng. (ASCE) 112, 867-920.
Pohland F. G. and Suidan M. T. (1987) Prediction of pH stability in biological treatment systems. Chem. Wastewater Technol. 23, 441-463.
Polprasert C., Kemmadamrong P. and Tran F. T. (1992) Anaerobic baffled reactor (ABR) process for treating a slaughterhouse wastewater. Environ. Technol. 13, 857-865.
Ruiz I., Veiga M. C., de Santiago P. and Blazquez R. (1997) Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter. Biores. Technol. 60 (3), 251-258.
Sambhunath G. (1975) Anaerobic acidogensis of wastewater sludge. J. Water Pollut. Control Fed. 47, 30-45.
Sanchez Riera F., Corodoba P. and Sineriz F. (1985) Use of UASB reactor for the anaerobic treatment of stillage from sugar cane molasses. Biotechnol. Bioeng. 27, 1710-1716.
Sayed S., Campen L. and Lettinga G. (1987) Anaerobic treatment of slaughterhouse waste using a flocculant sludge UASB reactor. Biol. Wastes 21, 11-28.
Schauer N. L., Brown D. P. and Ferry J. G. (1982) Kinetics of formate metabolism in Methanobacterium formicicum and Methanospirillum hungatei. Appl. Environ. Microbiol. 44, 549-554.
Schmidt J. E. and Ahring B. K. (1996) Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol. Bioeng. 49 (2), 229-246.
Schröder M., Muller C., Posten C., Deckwer W. D. and Hecht V. (1997) Inhibition kinetics of phenol degradetion from unstable steady-state data. Biotechnol. Bioeng. 54 (6), 567-576.
Setiadi T., Husaini and Djajadiningrat (1996) Palm oil mill effluent treatment by anaerobic baffled reactors: Recycle effects and biokinetic parameters. Wat. Sci. Technol. 34 (11), 59-66.
Shah Y. T. (1978) Gas-liquid-solid reactor design. Chap. 3, McGraw-Hill, New York.
Speece R. E. (1970) The effect of short-term temperature variation on methane production. J. Water Pollut. Control Fed. 42, 241-256
Speece R. E. (1983) Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol. 17: 416A-427A.
Staab K. F., Stotz G., Bardtke D. and Spang H. J. (1983) Investigations on treatment of waste from pig fattening units up to a quality suitable for water course discharge., Agricultural Waste. 5, 189-204.
Stronach S. M., Rudd T. and Lester J. N. (1986) Anaerobic digestion process in industrial wastewater treatment. Springer-Verlag Co., New York.
Suidan M. T., Najm I. N., Pfeffer J. T. and Wang Y. T. (1988) Anaerobic biodegradation of phenol: Inhibition kinetics and system stability. J. Envir. Eng. (ASCE) 114 (12), 1359-1376.
Switzenbaum M. S. and Jewell W. J. (1980) Anaerobic attached-film expanded- bed reactor treatment. J. Water Pollut. Control Fed. 52 (8), 2257-2269.
Tait S. J. and Freidman A. A. (1980) Anaerobic rotating biological contactor for carbonaceous wastewaters. J. Water Pollut. Control Fed. 52 (8), 2257-2269.
Tay J. H. and Yan Y. G. (1996) Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Wat. Envir. Res. 68 (12), 1144-1150.
Tilche A. and Yang X. (1987) Light and scanning electron microscope observations on the granular biomass of experimental SBAF and HABR reactor.
Proceedings of Gasmat Workshop, Netherlands, pp. 170-178.
Tomlinson E. J. and Chamber B. (1979) The effect of longitudinal mixing on the settleability of activated sludge. Technical Report TR 122, Water Research Centre, Stevenage.
Uyanik S., Sallis P. J. and Anderson G. K. (2002) The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part I: Process performance. Wat. Res. 36 (4), 933-943.
Van Lier J. B., Groeneveld N. and Lettinga G. (1996) Development of thermophilic methanogenic sludge in compartmentalized upflow reactors. Biotechnol. Bioeng. 50, 115-124.
Visser A., Gao Y. and Lettinga G. (1992) Anaerobic treatment of synthetic sulphate-containing wastewater under thermophilic conditions. Wat. Sci. Technol. 25 (7), 193-202.
Wang J., Araki T., Ogawa T., Matsuoka M. and Fukuda H. (1999) A method of graphically analyzing substrate-inhibition kinetics. Biotechnol. Bioeng. 62 (2), 402-411.
Wang Y. T., Gabbard H. D. and Pai P. C. (1991) Inhibition of acetate methanogenesis by phenols. J. Envir. Res. 66, 794-799.
Westrich J. T. and Berner R. A. (1988) The effect of temperature on rates of sulfate reduction in marine sediments. Geomicrobiol J. 6, 99-117.
Wu C. S., Huang J. S., Yan J. L. and Jih C. G. (1998) Consecutive reaction kinetics involving distributed fraction of methanogens in fluidized-bed bioreactors. Biotechnol. Bioeng. 57, 367-379.
Xing J. and Tilche A. (1992) The effect of hydraulic retention time on the hybrid anaerobic baffled reactor performance at constant loadings. Biomass Bioenergy 3 (1), 25-29.
Xing J., Boopathy R. and Tilche A. (1991) Model evaluation of hybrid anaerobic baffled reactor treating molasses wastewater. Biomass Bioenergy 1 (5), 267-274.
Yang P. Y. and Moengangongo T. H. (1987) Operational stability of horizontally baffled anaerobic reactor for diluted swine wastewater in the tropics. Trans. ASAE 30 (4), 1105-1110.
Young H. W. and Young J. C. (1988) Hydraulic characteristics of upflow anaerobic filter. J. Environ. Eng. 114 (3), 621-638.
Zingerman J. P., Metha S. C., Salter J. M. and Radebaugh G. W. (1992) Validation of a computerized image analysis system for particle size determination: Pharmaceutical application. International J. Pharma. 88, 303-312.
Zhou G. M. and Fang H. H. P. (1997) Co-degradation of phenol and m-cresol in a UASB reactor. Biores. Technol. 61 (1), 47-52.