| 研究生: |
董彥明 Dong, Yen-Ming |
|---|---|
| 論文名稱: |
膨脹性添加物對水庫淤泥燒製輕質骨材之影響 The Influence of Bloating Additives on the Preparation of Lightweight Aggregates using Reservoir Sediments |
| 指導教授: |
雷大同
Ray, Dah-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 水庫淤泥 、輕質骨材 、發泡劑 |
| 外文關鍵詞: | reservoir sediments, lightweight aggregates, bloating additives |
| 相關次數: | 點閱:180 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
輕質骨材製成之輕質混凝土具有降低建築物自重、隔熱、隔音性佳等諸多優點,而從水庫浚渫出的大量淤泥是適於燒製輕質骨材眾多原料之一。將淤泥燒製成輕質骨材不僅能解決淤泥堆放所產生之環境衝擊問題,且能替代天然砂石,成為具有高附加價值的綠色建材。
近年來許多研究顯示水庫淤泥有燒製成輕質骨材之潛力,但在密度、吸水率、抗壓強度等性質方面仍有改進之空間。本研究在淤泥中添加發泡劑後進行燒結,期望能獲得質輕、低吸水性及高強度的高性能輕質骨材,或是擁有大而均勻之孔隙,適合做為隔音防火用之超低密度骨材,並尋求最佳之燒結條件。
本研究之淤泥取自石門水庫,以其為主要原料,添加不同比率(2.5%、5%、7.5%、10%)及粒徑(100/200目、200/400目、< 400目、< 5μm)之白雲石或大理石做為發泡劑,探討其對骨材性質所產生之影響,由實驗結果可得以下結論:
1. 石門水庫淤泥原樣之d50約為3.8μm,礦物組成以石英、伊萊石、綠泥石為主,化學組成位於Riley相圖之膨脹區內。
2. 以淤泥原樣燒結,約在1150℃後能產生足夠黏滯性玻璃質以包覆氣體使骨材開始膨脹,在1250℃燒結後,骨材密度約為1.48 g/cm3。
3. 添加粒徑<400目之白雲石5%,在1175℃燒結,骨材密度即可降至約1.46 g/cm3,顯示添加發泡劑有助於燒結溫度之降低;在1250℃燒結,骨材密度可降至0.93 g/cm3,顯示添加發泡劑可大幅降低骨材之密度;添加量超過7.5%時,由於發泡劑中鈣、鎂成分的助熔效果,使骨材在1200℃燒結即崩塌變形,故添加率與燒結溫度應作適當之相對調整。
4. 發泡劑粒徑與骨材中孔隙之連通度有密切關係,粒徑 >200目之發泡劑,易產生連通之孔隙,使釋放的氣體逸失,骨材之膨脹性不佳,密度與未添加者相近;粒徑 <400目之發泡劑因不易產生連通之孔隙,氣體能有效包覆在胚體中,骨材密度甚至能降低至1 g/cm3以下。
5. 發泡劑之添加使骨材孔隙增加、密度降低,惟抗壓強度亦隨之降低。本研究所製備之骨材在一般輕質骨材密度範圍內(1.8~1.2 g/cm3),其抗壓強度為49.97~10.72 MPa,符合輕質混凝土使用上之要求。
6. 淤泥中添加7.5%,200/400目之白雲石,可在1200℃燒製出體密度1.23 g/cm3,吸水率小於1%,抗壓強度19.1MPa之輕質骨材,是本研究所製備,綜合性能最佳之骨材,適用於結構用輕質混凝土之配製。
7. 淤泥中添加5%,粒徑<5μm之白雲石,在1250℃燒結,可得體密度0.63 g/cm3之超輕質骨材,適用配製隔熱用輕質混凝土。
8. 大理石粉末之發泡機制與白雲石粉末類似,可產生相近甚至更佳的發泡效果,是另一種發泡劑之原料。
The concrete made from lightweight aggregates has the advantages of building light self-weight, good thermal and acoustic insulations. The sediments dredged out from reservoir have become one of the raw materials to manufacture lightweight aggregates. The discovery of reservoir sediments being able to sinter into lightweight aggregates not only solves the environmental impact caused by the sediments deposition but also substitutes some of the natural aggregates. Therefore, reservoir sediments have become a source manufacturing highly-valued green construction material.
Many recent researches have reported that reservoir sediments have the potential of manufacturing lightweight aggregates, however, there are still some improvements can be pursued such as bulk density, water absorption and compressive strength. This study investigated the effects and conditions of adding bloating materials into the sediments, expected by followed sintering to obtain aggregates with better qualities in density, water absorption and compressive strength than that from sediments only. Furthermore, the conditions to obtain ultra-lightweight aggregates with large and uniform pores to be used as acoustic insulation and fire-proof materials were examined.
The reservoir sediments used in this study were collected from Shihmen Reservoir in Tao-Yuan County. The sediments were mixed with different percentages (2.5%, 5%, 7.5% and 10%) and sizes (100/200 mesh, 200/400 mesh, <400 mesh and <5μm) of dolomite or marble powders as bloating additives. The influences of these additives were investigated. Based on the experimental results, the following conclusions can be drawn:
1. The median size (d50) of reservoir sediments is 3.8μm. The mineral compositions of sediments are mainly quartz, illite and chlorite. Chemical composition is located in the bloating region of Riley phase diagram.
2. Using only the reservoir sediments as the raw material, a viscous glassy material can be generated and to seclude the gas and dilate at 1150℃. Sintered at 1250℃, the bulk density of the aggregates is around 1.48 g/cm3 .
3. For sediments mixed with 5%, <400 mesh dolomite and sintered at 1175℃, the bulk density of the aggregates produced can be reduced to 1.46 g/cm3, showing that the addition of bloating materials can help to reduce the sintering temperature. Sintered at 1250℃, the density can further be reduced to 0.93g/cm3, proving that bloating materials can help to reduce the density of the aggregates. When dolomite addition is increased to 7.5%, the fluxing effects due to the calcium and magnesium content made the aggregates to collapse at 1200℃. Therefore bloating materials addition ratio and sintering temperature should be properly adjusted.
4. The amount and connectivity of open pores in the aggregates are related to the particle size of the additives. Bloating materials with sizes >200 mesh can produce connected open pores allowing gas to escape, and deteriorating the dilation of the aggregates. The density is similar to the density of aggregates made from only sediments. Additives with sizes <400 mesh can reduce the connectivity of pores and seclude the gas efficiently, it is even able to manufacture aggregates with bulk density less than 1 g/cm3.
5. The adding of bloating additives increases the aggregate porosity and the density, however, it also let the compressive strength decrease. The aggregates prepared in this study have average densities in the range of 1.8 ~ 1.2 g/cm3, and the compressive strengths are between 49.97 and 10.72MPa, which fulfill the requirements in lightweight concrete preparation.
6. The optimum conditions for lightweight aggregates in this study are as follows: 200/400 mesh dolomite 7.5%; sintering at 1200℃ for 30 min. The lightweight aggregates produced have the properties: density 1.23 g/cm3; water absorption less than 1% and compressive strength 19.1MPa. This is suitable for the application in structural concrete.
7. Addition of 5%, <5μm dolomite as bloating materials and sintered at of 1250℃, the aggregates produced can have densities as low as 0.63 g/cm3. The ultra-light aggregates with large and uniform pores, are suitable in the application of heat and acoustic insulation purposes.
8. The bloating mechanism and ability of marble powders in the manufacture of lightweight aggregates are similar to dolomite, and occasionally even better.
1. 經濟部水利署北區水資源局全球資訊網: http://www.wranb.gov.tw/mp.asp?mp=5
2. 楊宗岳,陳豪吉及蔡文博,“台灣輕質骨材混凝土之發展與應用,” 臺灣公路工程,36卷,3期,2-16頁,2010。
3. 南區水資源局全球資訊網:
http://www.wrasb.gov.tw/index.aspx.
4. 國家災害防救科技中心-莫拉克災害專區:
http://map2.ncdr.nat.gov.tw/morakot/index.htm.
5. 內政部建築研究所,水庫淤泥輕質骨材產製及輕質骨材混凝土應用與推廣(二)水庫淤泥輕質骨材況凝土標準規範訂定,2003年12月。
6. 林維明,“挪威輕質泥凝土橋樑經驗談,”土木技術,95-115頁,2000。
7. Ikeda,S., “Development of Lightweight Aggregate Concrete in Japan,” Internation Symposium on Structural Lightweight Aggregate Concrete, 1995.
8. 劉達中,“橋樑工程之回顧與前瞻,”中興工程季刊,107期,85-97頁,2010。
9. 李盈林,採礦工程技術應用於清除水庫淤泥以永續經營石門水庫之研究,國立成功大學資源工程學系,碩士論文,2006。
10. 蔡尚晏,水庫淤泥添加玻璃粉燒製輕質骨材之研究,國立成功大學資源工程學系,碩士論文,2008。
11. 李嶸泰,劉弘祥,黃崇仁及侯秉承,“石門水庫淤泥處理對策研究,”中興工程季刊,106期,63-71頁,2010。
12. 黃忠信,郭文毅及彭淑娟,水庫淤泥生態性利用之整體研究,國立成功大學,2004。
13. 龔洛書及柳春圃,輕集料混凝土,82-87頁,北京:中國鐵道出版社, 1996。
14. 石門水庫及其集水區整治計畫專屬網站:
http://shihmen.wra.gov.tw/
15. 石門水庫浚渫作業簡介,經濟部水利署北區水資源局: http://www.wranb.gov.tw/ct.asp?xItem=2573&ctNode=703&mp=5
16. 黃崇仁及鄭瑞濱,“石門水庫除淤多元利用,”營建知訊,302期,30-42頁,2008。
17. 伍美玲,台灣水庫淤泥之性質研究,成功大學資源工程研究所,碩士論文,2009。
18. Repacholi, M.H., Clay Mineralogy, New York : Chapman&Hall, 1994.
19. Norton, F.H., Fine Ceramics:Technology and applications, New York : McGraw-Hill Book, 1970.
20. Kang, S-J.L., W.A. Kaysser, G. Petzow, and D.N. Yoon, “Liquid Phase Sintering of Mo-Ni Alloys for Elimination of Isolated Pores,” Modern Developments in Powder Metal, Vol.15, pp.477-488, 1985.
21. Riley, C.M., “Relation of Chemical Process to the Bloating Clay,” Journal of American Ceramic, Vol.34(4), pp.121-128, 1951.
22. de Gennaro, R., P. Cappelletti, G. Cerri, M. de’ Gennaro, M. Dondi, S.F. Graziano and A. Langella, “Campanian Ignimbrite as raw material for lightweight aggregates,” Applied Clay Sciences, Vol.37, pp.115-126, 2007.
23. 陳澤修,“綠色建築新材料冷結型煤灰輕質骨材,”現代營建,208期,1997。
24. Bijen, J.M.,“Manufacturing Processes of Artificial Lightweight Aggregate from Fly Ash,” The International Journal of Cement Composites and Lightweight Concrete, Vol.21(3), pp.179-187, 1986.
25. Bhatty, J.I. and K.J. Reidt, “Moderate Strength Concrete From Lightweight Sludge Ash Aggregate,” The International Journal of Cement Composites and Lightweight Concrete, Vol.21(3), pp.179-187, 1989.
26. Chen, H.J., S.Y. Wang and C.W. Tang, “Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate,” Construction and Building Materials, Vol. 24(1), pp.46-65, 2010.
27. Cheeseman, C.R., A. Makinde and S. Bethanis, “Properties of lightweight aggregate produced by Resources,” Conservation and Recycling, Vol.43, pp.147-162, 2005.
28. Tay, J.H. and K.Y. Show, “Clay-blended Sludge as Lightweight Aggregates Concrete Material,” J. Environmental Eng., Vol.117(2), pp. 834-844, 1991.
29. Tsai, C.C., K.S. Wang and I.J. Chiou, “Effect of SiO2-Al2O-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge,” Journal of Hazardous Materials, Vol.134, pp.87-93, 2006.
30. 王順元,陳豪吉,顏聰及賴文銘,“以燃煤電廠底灰燒製輕質骨材之研究,” 第二屆輕質骨材混凝土研討會暨國科會產學合作成果發表會論文集,pp.117-136,2005。
31. Wainwriht, P.J. and D.J.F. Cresswell, “Synthetic Aggregates from Combustion Ashes Using an Innovative Rotary Kiln,” Waste Management, Vol.21, 頁 241-246. 2001.
32. 蕭博仰,水庫淤泥輕質骨材之膨脹氣體生成研析,國立中興大學土木工程研究所,碩士論文,2006。
33. Hung, M.F. and C.L. Hwang, “The performance of high performance lightweight concrete by using fine sediment lightweight aggregate,” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol.17(1), pp.81-95, 2005。
34. 黃兆龍,混凝土性質與行為,詹氏出版,1997。
35. Institute Concrete American, Guide for Structure Lightweight Aggregate Concrete. ACI Committee 213, Re-approved, 1984.
36. 張大鵬及林草英,“輕質骨材性最佳混凝土強度之關係(一),”行政院國家科學委員會專題研究計畫成果報告書,2005。
37. 蔡宗勳,包裏奈米改質黏土對輕質骨材工程性質的影響,國立成功大學土木工程研究所,碩士論文,2005。
38. Neville, A.M. Properties of concrete, New York:John Wiley & Sons, 1995.
39. Wasserman, R., and A. Bentur, “Effect of Lightweight Fly Ash,” Cement and Concrete Research, Vol.27(4), pp.525-537, 1997.
40. 陳豪吉及王順元,“水庫淤泥輕質骨材之產製及其工程性質,”中國土木水利工程學會會刊,Vol.33(5),pp.81-97,2005。
41. 顏聰,“輕質骨材混凝土隔熱性與能源節約,”營建知訊,120期,81-97頁,1992。
42. 陳致銘,水庫淤泥燒製之中空球及其工程性質,國立成功大學土木工程研究所,碩士論文,2006。
43. 黃忠良,粉末冶金學,中華民國粉末冶金協會,2001。
44. 宋光粱(譯),陶瓷技術概論,徐氏基金會,1992。
45. 陳皇鈞,陶瓷材料概論,曉園出版社,1987。
46. Elzey, D.M. and H.N.G. Wadley, “The limits of solid state foaming,” Acta mater, Vol.49, pp.849-859, 2001.
47. 顏聰及陳豪吉,“國內輕質骨材燒製與輕質混凝土之拌製可行性研究,”中華民國建築學會第六屆建築研究成果發表會論文集,797-804頁, 1993。
48. 劉元鶴及郭玉順,“人造輕骨料膨脹氣体的高温在線色譜分析的設備及其應用效果,” 矽酸鹽通報,5期,1996。
49. 馮乃謙,“人造輕骨料的試製與研究,”新型建築材料,12期,19-22頁,1995。
50. Wei, Y.L. and Y.Y. Lin, “Role of Fe compounds in light aggregate formation from a reservoir sediment,” Journal of Hazardous Materials, Vol.171, pp.111-115, 2009.
51. Wei, Y.L., “Recycling of harbor sediment as lightweight aggregate,” Marine Pollution Bulletin, Vol.57, PP.867-872, 2008.
52. 傅建璋,升溫速率對石門水庫淤泥製備輕質骨材之影響,成功大學資源工程研究所,碩士論文,2009。