簡易檢索 / 詳目顯示

研究生: 鄭郁靜
Cheng, Yu-Ching
論文名稱: 應用共振/扭轉剪力試驗對離岸海床土壤動態性質之研究
Application of Resonant/Torsional Shear Test to Study the Dynamic Properties of Offshore Subsoil
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 128
中文關鍵詞: 海床土壤共振柱試驗扭轉剪力試驗剪力模數阻尼比動態性質
外文關鍵詞: offshore subsoil, resonant column test, torsional shear, shear modulus, damping ratio, dynamic properties
ORCID: https://orcid.org/0000-0003-0655-156X
相關次數: 點閱:148下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用台灣彰化離岸的海床土壤進行重模試體,利用Stokoe型振柱儀器進行不同初始孔隙比(0.7、0.8與0.9)、飽和度(15%、30%、60%與100%)、細粒料含量(15%、30%與50%)在不同有效圍壓(20 kPa、80 kPa與320 kPa )下的試驗,目的是分析不同情況下的剪力模數及阻尼比,深入了解土壤動態性質在不同狀態下會產生的變化。本研究使用共振柱低振幅試驗求取最大剪力模數,扭轉剪力試驗獲得特定剪應變下的剪力模數及阻尼比。
    試驗結果顯示,隨剪應變增加,剪力模數會下降、阻尼比會上升。孔隙比、有效圍壓、細粒料含量、飽和度皆對剪力模數有影響,其中細粒料含量會受到飽和度影響而改變其強度趨勢。而孔隙比及有效圍壓下降都會使正規化剪力模數向左偏移。阻尼比的變化很小,參數中除了孔隙比,其餘三個因素皆會對阻尼比造成影響。阻尼比會隨有效圍壓下降、飽和度下降及細粒料含量上升而上升。

    The main purpose of this research is to study the effect of the factors which are void ratios (e = 0.7,0.8 and 0.9), fines content(FC = 15%, 30%, and 50%), degree of saturation(S = 15%, 30%, 60%, and 100%), and confining pressure (Pc = 20 kPa, 80 kPa, and 320 kPa) on the dynamic properties of low plastic silty sands. The offshore subsoil in Changhua, Taiwan was selected for the study. To perform this study, the resonant column low-amplitude test was conducted to obtain the maximum shear modulus, the free vibration decay method acquired the viscous damping ratio, and the torsional shear test was used to obtain the shear modulus and hysteresis damping ratio under a specific shear strain.
    Presented herein are shear moduli of various kinds of sands for shear strain of 10-6 to 10-2 which were obtained by utilizing a Stokoe-type resonant column apparatus and a torsional shear apparatus. The test results show that the shear modulus decreases and the damping ratio increase with increasing shear strain. The void ratio, saturation, effective confining pressure, and fine content all affect the shear modulus and damping ratio. But the content of fines will be affected by saturation and change its trend. The decrease in void ratio and effective confining pressure will shift the normalized shear modulus to the left. The decrease in void ratio and effective confining pressure will make the normalized shear modulus a leftward shift. The damping ratio is tiny variations. In addition to the void ratio, the damping ratio will increase with decreasing effective confining pressure, decreasing saturation, and increasing fine content.

    摘要 i Extented Abstract ii 誌謝 ix 目錄 x 表目錄 xii 圖目錄 xiii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的與方法 1 1.3 論文概述 2 第二章 文獻回顧 4 2.1 動態性質的量測方法 4 2.1.1 現地試驗 4 2.1.2 實驗室試驗 5 2.2 最大剪力模數試驗方法 9 2.3 共振柱試驗發展 12 2.4 剪應變對動態性質的影響 15 2.5 土壤的動態性質與影響因子 20 2.5.1 剪力模數 23 2.5.2 阻尼比 34 第三章 動態性質計算 37 3.1 共振柱試驗動態性質計算 37 3.1.1 試體基本假設 37 3.1.2 共振柱頻率方程式 38 3.1.3 初始剪力模數 42 3.1.4 黏滯性阻尼比 43 3.2 扭轉剪力試驗動態性質計算 50 3.3 剪應變測量 51 第四章 試驗設備與流程 53 4.1 試驗設備介紹 53 4.1.1 共振柱試驗儀本體 53 4.1.2 加壓系統 54 4.1.3 控制與資料擷取 54 4.2 設備校準 59 4.2.1 轉動慣量校準 59 4.2.2 近接感測器校準 60 4.2.3 扭剪校準 60 4.3 土壤基本物性與控制變因 65 4.4 試驗流程 67 4.4.1 重模土樣準備 69 4.4.2 重模試體製作過程 69 4.4.3 儀器架設 71 4.4.4 試體進水及飽和 74 4.4.5 壓密階段 75 4.4.6 共振柱試驗-低振幅試驗 75 4.4.7 水平扭轉剪力試驗 77 4.4.8 試驗結束 78 第五章 試驗結果與討論 79 5.1 扭轉剪力試驗與共振柱試驗之比較 79 5.2 經驗公式分析 85 5.3 對剪力模數之影響 85 5.3.1 孔隙比 85 5.3.2 有效圍壓 89 5.3.3 細粒料含量 93 5.3.4 飽和度 97 5.4 對阻尼比之影響 102 5.4.1 有效圍壓 102 5.4.2 孔隙比 105 5.4.3 飽和度 108 5.4.4 細粒料含量 112 第六章 結論與建議 114 6.1 結論 114 6.2 建議 115 參考文獻 116 附錄A 最大剪力模數 123 附錄B Hardin 公式n、A參數表及相關係數 125

    1. Arulnathan, R., Boulanger, R.W., and Riemer, M.F. “Analysis of bender element tests.” Geotechnical Testing Journal, Vol. 21, No. 2, pp. 120-131. (1998)
    2. Baig, S., Picornell, M., and Nazarian, S. “Low strain shear moduli of cemented sands.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 6, pp. 540-545 (1997)
    3. Burland, J.B., Longworth, T.I., and Moore, J.F. A. “A study of ground movement and progressive failure caused by a deep excavation in Oxford Clay.” Géotechnique, Vol. 27, No. 4, pp. 557-591 (1977)
    4. Chameau, J.L. and Sutterer, K. “Influence of fines in liquefaction potential and steady state considerations.”, 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India, pp. 183-184. (1994)
    5. Chang, N.Y. “Influence of fines content and plasticity on earthquake-induced soil liquefaction.” Geotechnical Engineering Division, Department of Civil Engineering, University of Colorado at Denver. (1990)
    6. Chien, L.K., Oh, Y.N., and Chang, C.H. “Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil.” Canadian Geotechnical Journal, Vol. 39, No. 1, pp. 254-265. (2002)
    7. Darendeli, M.B., “Development of a new family of normalized modulus reduction and material damping curves.” The University of Texas at Austin. (2001).
    8. Díaz-Rodríguez, J.A., and López-Molina, J.A., “Strain thresholds in soil dynamics.” Proceedings of the 14th world conference on earthquake engineering, pp. 12-17 (2008).
    9. Drnevich, V.P., and Richart Jr, F.E. “Dynamic prestraining of dry sand.” Journal of the Soil Mechanics and Foundations Division, Vol. 96, No. 2, pp. 453-469. (1970)
    10. Georgiannou, V.N., Hight, D.W. and Burland, J.B. “Undrained behaviour of natural and model clayey sands.”, Soils and Foundations, Vol. 31, No. 3, pp. 17-29(1991)
    11. Goudarzy, M., Rahman, M.M., König, D., and Schanz, T. “Influence of non-plastic fines content on maximum shear modulus of granular materials.” Soils and Foundations, Vol. 56, No. 6, pp.973-983. (2016).
    12. Hall, J.R., and Richart, F.E. “Dissipation of elastic wave energy in granular soils.” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 89, No. SM6, Proc. Paper 3698, November (1963)
    13. Hardin, B.O., and W.L Black, “Vibration modulus of normally consolidated clay.” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM2, March 1968.
    14. Hardin, B.O., and Drnevich V.P., “Shear modulus and damping in soils: measurement and parameter effects.” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, pp. 603-624 (1972a).
    15. Hardin, B.O., and Drenvich, V.P., “Shear modulus and damping in soils: design equations and curves.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp. 667-692 (1972b).
    16. Isenhower, W.M. “Torsional simple shear/resonant column properties of San Francisco Bay mud.” Ph. D. Thesis, The University of Texas at Austin. (1979).
    17. Iwasaki, T., and Tatsuoka, F., “Effects of grain size and grading on dynamic shear moduli of sands.” Soils and Foundations, Vol. 17, No. 3, pp. 19-35 (1977).
    18. Iwasaki, T., Tatsuoka, F., and Takagi, Y., “Shear moduli of sands under cyclic torsional shear loading.” Soils and Foundations, Vol. 18, No. 1, pp. 39-56 (1978).
    19. Jia, J., 和 Jia., Soil Dynamics and Foundation Modeling, Switzerland: Springer (2018).
    20. Kim, T.C., and Novak, M. “Dynamic properties of some cohesive soils of Ontario.” Canadian Geotechnical Journal, Vol. 18, No. 3, pp. 371-389 (1981)
    21. Koester, J.P. “The influence of fines type and content on cyclic strength.”, In Ground Failures Under Seismic Conditions, ASCE, pp. 17-33. (1994)
    22. Kuerbis, R., Nagussey, D. and Vaid, Y.P. “Effect of gradation and fines content on the undrained response of sand.” Geotechnical Special Publication, Vol. 21, pp. 330-45 (1988)
    23. Likitlersuang, S., Teachavorasinskun, S., Surarak, C., Oh, E., and Balasubramaniam, A. “Small strain stiffness and stiffness degradation curve of Bangkok Clays.” Soils and Foundations, vol. 53, No. 4, pp. 498-509(2013).
    24. Menzies, B.K. and Matthews, M.C. “The continuous surface wave system: A modern technique for site investigation.” Special lecture: Indian Geotechnical Conference, Madras, Dec 11-14 (1996)
    25. Ni, S.H., “Dynamic properties of sand under true triaxial stress states from resonant/column torsional shear tests.” Ph D. Thesis, The University of Texas at Austin (1987).
    26. Naeini, S.A., 和 Baziar, M.H., “Effect of fines content on steady-state strength of mixed and layered samples of a sand.” Soil Dynamics and Earthquake Engineering, Vol. 24, No. 3, pp. 181-187 (2004).
    27. Payan, M., Senetakis, K., Khoshghalb, A., and Khalili, N., “Characterization of the small-strain dynamic behaviour of silty sands; contribution of silica non-plastic fines content.” Soil Dynamics and Earthquake Engineering, Vol. 102, pp. 232-240 (2017).
    28. Pitman, T.D., Robertson, P.K. and Sego, D.C. “Influence of fines on the collapse of loose sands.”, Canadian Geotechnical Journal, Vol. 31, No. 5, pp. 728-739. (1994)
    29. Pyke, R., Stokoe, K.H., Anderson D.G., and Idriss I.M., “Development of generic modulus reduction and damping curves.” Earthquake Spectra. (1995).
    30. Salgado, R., Bandini, P., and Karim, A., “Shear strength and stiffness of silty sand.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 5, pp. 451-462 (2000).
    31. Santamarina, J.C., Klein, K.A., and Fam, M A. Soils and waves. New York: J. Wiley and Sons. (2001)
    32. Seed, H.B. and Idriss, I.M., “Soil moduli and damping factors for dynamic response analysis.” Report No. EERC 70-10, Earthquake Engineering Resource Center, University of California, Berkeley, California. (1970).
    33. Silver, Marshall L., “Load, deformation, and strength behavior of soils under dynamic loadings.” International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri. Vol. 3, pp. 873-895 (1981).
    34. Singh, S. (1994). “Liquefaction characteristics of silts.” Geotechnical and Geological Engineering, Vol. 14, No. 1, pp. 1-19.
    35. Skoglund, G.R., Marcuson, W.F., and Cunny, R.W., “Evaluation of resonant column dynamic testing devices.” Vicksburg, Mississippi, U.S. Army Engineer Waterways Experiment Station. (1975).
    36. Stoll, R.D., and Kald, L. “Threshold of dilation under cyclic loading.” Journal of the Geotechnical Engineering Division, Vol. 103, No. 10, pp.1174-1178. (1977)
    37. Thevanayagam, S., Ravishankar, K., and Mohan, S. “Steady state strength, relative density and fines content relationship for sands.” Transportation Research Record, Vol. 1547, No.1, pp. 61-67 (1996).
    38. Thevanayagam, S. “Liquefaction potential and undrained fragility of silty soils.” In Proceedings of the 12th World Conference Earthquake Engineering. New Zealand Society of Earthquake Engineering, Wellington, New Zealand. (2000)
    39. Thevanayagam, S., Fiorillo, M., and Liang, J., “Effect of non-plastic fines on undrained cyclic strength of silty sands.” In Soil Dynamics and Liquefaction 2000, pp. 77-91 (2000).
    40. Vaid, Y.P. “Liquefaction of silty soils”, In Ground Failures Under Seismic Conditions, pp. 1-16(1994).
    41. Vucetic, M., and Dobry, R., “Effect of soil plasticity on cyclic response.” Journal of Geotechnical Engineering, Vol. 117, No. 1, pp. 89-107 (1991).
    42. Vucetic, M., “Cyclic threshold shear strains in soils.” Journal of Geotechnical Engineering, Vol. 120, No. 12, pp. 2208-2228 (1994).
    43. Wu, S., Gray, D.H., and Richart, F. E., Jr., “Capillary effects on dynamic modulus of sands and silts,” Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 9, pp. 1188-1203 (1984).
    44. Wichtmann, T., Navarrete Hernández, M.A., and Triantafyllidis, T., “On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand.” Soil Dynamics and Earthquake Engineering, Vol. 69, pp. 103-114 (2015).
    45. Yamamuro, J.A. and Lade, P.V. “Steady-state concepts and static liquefaction of silty sands.”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 9, pp. 868-877. (1998)
    46. Youn, J.U., Choo, Y.W., and Kim, D.S., “Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests.” Canadian Geotechnical Journal, Vol. 45, No. 10, pp. 1426-1438 (2008).
    47. Zhang, J., Andrus, R.D., and Juang, C.H., “Normalized shear modulus and material damping ratio relationships.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 4, pp. 453-464(2005)
    48. Zlatovic, S. and Ishihara, K. “Normalized behavior of very loose non-plastic soils: effects of fabric.” Soils and Foundations, Vol. 37, No. 4, pp. 47-56 (1997).
    49. 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程研究所,(2004)。
    50. 呂銘浩、劉俊秀和王端正,「不同砂土之阻尼比關係應用於減振箱之初步研究」, (2008).
    51. 李偉榮,「細料含量對飽和粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,(2010)。
    52. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,第9期,pp. 5-19,(1985)。
    53. 呂銘浩,「不同砂土之阻尼比關係應用於減振箱之初步研究」,碩士論文,國立陽明交通大學土木工程學系,(2008)
    54. 李偉榮,「細料含量對飽和粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,(2010)。
    55. 林靜怡,「細粒料對粉土細砂小應變勁度之影響」,碩士論文,國立陽明交通大學土木工程學系,(2003)。
    56. 林鴻州、李廣信、于玉貞和呂禾,「基質吸力對非飽和土抗剪強度的影響」,岩土力學,第28卷,第9期,pp. 1931-1936,(2007)
    57. 紀佳妤,「應用共振柱試驗探討海床土壤動態特性之研究」,碩士論文,國立成功大學土木工程研究所,(2020)。
    58. 徐瑞旻,「共振柱試驗程式視窗化之研究」,碩士論文,國立成功大學土木工程研究所,(2002)。
    59. 黃信祥,「以現地冰凍土壤試體求得之剪力模數評估土壤之液化阻抗」,碩士論文,台灣科技大學營建工程研究所,(2003)。
    60. 黃耀道,「台灣中西部粉土質砂土液化行為分析」,博士論文,國立陽明交通大學土木工程學系研究所,(2007)。
    61. 陳志瑋,「細料含量對乾粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,(2010)。
    62. 葉兆欽,「飽和度對粉質砂土動態特性影響之研究」,碩士論文,國立成功大學土木工程研究所,(2011)。
    63. 應懷樵、劉進明和沈松,「半功率带宽法與 INV 阻尼計法求阻尼比的研究」. 噪聲與振動控制, 第26期,第2版,pp. 4-6,(2006)。
    64. 龔東慶、陳堯中、林保延,「彎曲元件試驗受輸入波頻率影響之研究」,中國土木水利工程學刊,第18卷,第3期,pp. 457-462,(2006)。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE