簡易檢索 / 詳目顯示

研究生: 林文琳
Lin, Wen-Lin
論文名稱: 台灣GPS連續觀測站資料品質分析
Data quality analysis on Taiwan continuous GPS observations
指導教授: 饒瑞鈞
Rau, Ruey-Juin
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 99
中文關鍵詞: GPS時間序列速度場共模誤差
外文關鍵詞: GPS, time series, velocity field, common noise
相關次數: 點閱:67下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來全球定位系統 ( GPS ) 已被廣泛的應用在地殼運動的研究上,為了使解算出來的資料品質更為可靠,在GPS的計算過程中則需要合理且可靠的參考框架。由於亞太地區的GPS連續測站大多位於板塊運動較為活躍的區域,加上台灣位於板塊邊界,板塊運動速率快且速度場較不穩定,故在約制站的挑選較為不易。本研究自1995年至2009年底的IGS ( International GNSS Service ) 參考站中選取時間序列完整、速度場穩定且網形幾何分布良好的測站作為國際約制站,解算國內長時間觀測的GPS測站,並由解算的結果判斷國內測站的速度場之穩定度,選擇適當的測站作為國內約制站進行小區域解算。本研究使用GAMIT/GLOBK軟體及ITRF2005國際參考框架解算點位座標並評估其速度場。比較Bernese 4.2以及GAMIT/GLOBK之計算結果,其時間序列的變化趨勢一致,而速度場的方向及大小則有些許的不同,在rms的精度比較上,則由GAMIT/GLOBK解算出來的結果較小。而地震對區域性速度場的變化在兩種解算結果中均可以看到,其中1999年的集集地震對西北東南方的測站皆造成影響,其速度場的方向均有所改變。在小區域的解算方面,本研究選擇台北地區的觀測網作為小區域解算的對象,並使用共模誤差技術,有效降低時間序列中觀測資料值的離散程度,在水平及高程分量上rms值平均分別可以降低18 %及16.7 %。為了解解算結果是否正確,故將台北地區測站的解算結果與中央研究院地球科學所GPS LAB公佈之結果互相比對,發現速度場方位角統一相差6°至9°,大小相差0.1 至1.2 mm。分析台北地區測站的時間序列,大部分的測站在水平分量其年週期振幅小於2 mm,高程分量的年週期振幅小於3 mm。分析高程分量異常變化的GS13測站,可以發現高程變化與地下水位有關,相關係數可達0.64。

    In recent years, Global Positioning System (GPS) has been widely used in the study of tectonic plate motion. In order to improve the data quality, the GPS calculation processes need a rational and reliable reference framework. Because of the Asia-Pacific region located mostly in the highly dynamic areas, together with Taiwan in the plate boundaries, plates in this area move quickly and unstable, such that the selection of the constrained GPS station is more difficult. We selected IGS (International GNSS Service) continuous stations with stability and duration in the interval of 1995 – 2009 to establish an appropriate distributed network for the Taiwan GPS network. Based on the results of the long-term GPS stations in Taiwan, we judged the steadiness of velocity field of GPS stations and chose the suitable GPS stations as the constrained Taiwan core-stations. In this research, we used GAMIT / GLOBK software and refer the coordinates to the ITRF2005 reference frame to evaluate the velocity field. According to the results derived from Bernese 4.2 and GAMIT / GLOBK, we can find that their time series had the same pattern, but the vector of the velocity field is slightly different, in which results derived from GAMIT/GLOBK software seem to be better. Variations of GPS velocity field derived from two methods show the effects of the Chi-Chi earthquake. This research selected continuous GPS array in Taipei as the test site for the smaller network, and we used the common-noise techniques to reduce the dispersion of GPS time series. The average values of horizontal and vertical components are reduced by 18% and 16.7% respectively. Comparing our Taipei results with the solutions of IES (INSTUTE OF EARTH SCIENCES, ACADEMIA SINICA, TAIPEI) GPS Lab’s solutions, we found that the difference between the direction and the magnitude of the velocity field are 6°-9° and 0.1-1.2 mm, respectively. The amplitude of annual period in horizontal and vertical components was less than 2mm and 3mm, respectively. Analyzing vertical components of GS13, we found that the elevation change and groundwater level has the same pattern, and the correlation coefficient is ~ 0.64.

    摘 要...........I Abstract...........II 致 謝........... III 目 錄...........IV 圖目錄...........VIII 第一章 前言...........1 1.1 研究動機及目的...........1 1.2 研究內容...........2 1.2.1 前言...........2 1.2.2 GPS系統架構與資料處理...........2 1.2.3 研究成果及時間序列分析...........2 1.2.4 討論與結論...........2 第二章 GPS系統架構及資料處理...........4 2.1 GPS衛星測量...........4 2.2 GPS系統架構...........4 2.3 GPS定位原理...........8 2.3.1 虛擬距離觀測量...........8 2.3.2 載波相位觀測量...........9 2.3.3 差分法...........10 2.4 GPS誤差來源...........11 2.4.1 與衛星有關之誤差...........11 2.4.1.1 軌道誤差...........11 2.4.1.2 衛星時錶誤差...........12 2.4.2 訊號傳遞之誤差...........13 2.4.2.1電離層折射誤差...........13 2.4.2.2對流層折射誤差...........13 2.4.2.3 多路徑效應影響誤差 ...........14 2.4.3 接收設備所引起之誤差 ...........14 2.4.3.1 接收儀時錶誤差...........14 2.4.3.2 接收儀位置誤差...........14 2.4.3.3 天線相位中心偏移誤差...........15 2.5 GPS研究方法及資料處理...........15 2.5.1 GAMIT/GLOBK簡介...........15 2.5.1.1 GAMIT...........16 2.5.1.2 GLOBK...........18 2.5.2 GPS資料來源...........19 2.5.3 GPS解算策略...........27 2.5.3.1 GPS解算之第一階段...........27 2.5.3.2 GPS解算之第二階段...........28 2.5.4 GPS資料處理...........32 第三章 研究成果及時間序列分析...........34 3.1 長時間觀測站之解算成果...........34 3.2 共模誤差處理結果...........35 3.3 台北地區觀測站之時間序列分析...........45 3.4 基線長度之時間序列...........49 第四章 討論...........53 4.1 長時間觀測站之比對...........53 4.1.1 西半部及外島地區...........56 4.1.2 南部地區...........57 4.1.3 東部地區...........60 4.1.4 rms精度比對...........62 4.2 台北地區觀測站之比對...........63 4.2.1 GPS速度場比對...........63 4.2.2 時間序列高程與地下水位比對...........67 4.2.3 基線長時間序列...........71 第五章 結論...........74 參考文獻...........76 附錄A...........81 附錄B...........88

    王敏、沈正康、董大南,非構造形變對GPS連續站位置時間序列的影響和修正,地球物理學報,第48卷,第5期,第1045-1052頁,2005。
    朱文耀、符養、李彥,GPS高程導出的全球高程震盪運動及季節性變化,中國科學,第33卷,第5期,第470-481頁,2003。
    安守中,進階GPS定位原理與應用,全華圖書股份有限公司,2007。
    地震地質調查及活動斷層資料庫建置計畫-活動斷層監測系統計劃總報告,經濟部中央地質調查所,共208頁,2006。
    余水倍、郭隆晨、蔡旻倩、許雅儒、蘇宣翰,台灣GPS連續觀測資料時間序列與應變分析(I),中央氣象局地震技術報告彙編,第45卷,第287-306頁,2006
    秘金鐘、李毓麟、張鵬、蔣志浩,GPS基準站座標與速度場精度及隨時間變化規律的探討,武漢大學學報信息科學版,第29卷,第9期,第763-767頁,2004。
    陳建全,台灣GPS 連續觀測站高程變動受環境因子影響之研究,國立中央大學地球物理研究所碩士論文,2003。
    張飛鵬、董大南、程宗頤、程明康、黃珹,利用GPS監測中國地殼的垂向季節性變化,科學通報,第47卷,第18期,第1370-1378頁,2002。
    梁偉鋒,華北GPS網GAMIT計算結果與IGS站選取的關係探討,第11卷,第4期,第55-58頁,2002。
    許雅儒,集集地震之震前、同震及震後變形模式研究,國立中央大學地球物理研究所博士論文,2004。
    黃立人,GPS觀測結果變形分析的參考框架及其合理性,測繪學報,第30卷,第1期,第16-20頁,2001。
    蔡旻倩,台灣西南部GPS資料時間序列分析與地殼變形模式研究,國立中央大學地球物理研究所碩士論文,2004。
    蔡旻穎,台灣GPS連續觀測站坐標時間序列分析方法研究,國立成功大學地球科學所碩士論文,2007。
    劉基余,GPS衛星導航定位原理與方法(第二版),科學出版社,2008。
    劉啟清,建立台灣地區全球定位衛星觀測網,中央氣象局地震技術報告彙編,第8-1卷,第1-28頁,1994。
    劉啟清、簡文峰、陳榮裕,利用GPS觀測資料監測地殼變動之穩定性探討(II),中央氣象局地震技術報告彙編,第42卷,第267-277頁,2005。

    Altamimi, Z., P. Sillard, and C. Boucher, ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications, J. Geophys. Res., 107, 2214, doi:10.1029/2001JB000561, 2002.
    Altamimi, Z., X. Collilieux, J. Legrand, B. Garayt, and C. Boucher, ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res., 112, B09401, doi:10.1029/2007JB004949, 2007.
    Bock, Y., L. Prawirodirdjo, J. F. Genrich, C. W. Stevens, R. McCaffrey, C. Subarya, S. S. O. Puntodewo, and E. Calais, Crustal motion in Indonesia from Global Positioning System measurements, J. Geophys. Res., 108, 2367, doi:10.1029/2001JB000324, 2003.
    Brockman, E., Combination of Solutions for Geodetic and Geodynamic Applications of the Global Positioning System(GPS), Ph. D. dissertation, Astronomical Institute, University of Berne, Berne, Switzerland, 1996.
    Chen, C.T., Hu, J. C., Lu, C. Y., Lee, J.C. and Chan, Y.C., Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Eng. Geol., 95, 30–47,2007.
    Dong, D., T. A. Herring, and R. W. King, Estimating regional deformation from a combination of space and terrestrial geodetic data, J. Geod., 72, 200-214, 1998.
    Dong, D., P. Fang, Y. Bock, M. K. Cheng, and S. Miyazaki, Anatomy of apparent seasonal variations from GPS-derived site position time series, J. Geophys. Res., 107, 2075, doi:10.1029/2001JB000573, 2002.
    Estey, L. H., and C. M. Meertens, TEQC: the multi-purpose toolkit for GPS/GLONASS data, GPS Solutions, 3, 42-49, 1999.
    Gross S, and Larson K. Annual signals in continuous GPS time series, Eos Trans AGU, 79, F182,1998,
    Herring, T. A., GLOBK: Global Kalman filter VLBI and GPS analysis program, version 10.0, Mass. Inst. of Technol., Cambridge, 2002.
    Herring, T. A., Matlab Tools for Viewing GPS Velocities and Time Series, GPS Solutions, 7, 194-199, 2003.
    Herring, T. A., R. W. King, and S. C. McClusky, Introduction to GAMIT/GLOBK, Release 10.3, Mass. Inst. of Technol., Cambridge, 2006.
    King, R. W., and Y. Bock, Documentation for the GAMIT GPS analysis software, Mass. Inst. of Technol., Cambridge, 1999.
    Langbein, J., and H. Johnson, Correlated errors in geodetic time series: Implications for time-dependent deformation, J. Geophys. Res., 102, 591-603, 1997.
    Langbein, J., Noise in two-color electronic distance meter measurements revisited, J. Geophys. Res., 109, B04406, 2004.
    Mao, A., C.G.A. Harrison, and T.H. Dixon, Noise in GPS coordinate time series, J. Geophys. Res., 104, 2797-2816, 1999.
    Munekane, H., M. Tobita and K. Takashima, Groundwater-induced verti-cal movements observed in Tsukuba, Japan, Geophys. Res. Lett., 31, L12608, doi:10.1029/2004GL020158, 2004.
    Nikolaidis, R., Observation of geodetic and seismic deformation with the Global Positioning System, Ph.D. dissertation, Univ. of Calif. San Diego, 2002.
    Seeber, G., Satellite Geodesy: Foundations, Methods, and Applications, 531 pp, Waler de Gruyter, Berklin, New York, 1993.
    Strange, W. E., A national spatial data system framework of continuously operating GPS reference stations, GIS World, 1, 37-41, 1994.
    Tabei, T., and W. L. Amin, Common-mode Errors in the GPS Coordinate Time Series-Application of Spatial Filtering Technique, J. Geodetic. Soc., 48, 229-241, 2002.
    Tobita, M., H. Munekane, M. Kaidzu, S. Matsuzaka, Y. Kuroishi, Y. Ma-saki and M. Kato: Seasonal variation of groundwater level and ground level around Tsukuba, J. Geod. Soc. Jpn., 50, 27-37, 2004.
    Watson, K. M., Y. Bock, and D. T. Sandwell, Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles basin, J. Geophys. Res., 107, 2074, doi:10.1029/2001JB000470, 2002.
    Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich, Southern California permanent GPS Geodetic Array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. Geophys. Res., 102, 18057-18070, 1997.
    Williams, S. D. P., The effect of coloured noise on the uncertainties of rates estimated from geodetic time series, J. Geod., 76, 483-494, 2003.
    Williams, S. D. P., Y. Bock, P. Fang, P. Jamason, R. Nikolaidis, L. Prawirodirdjo, M. Miller, and D. Johnson, Error analysis of continuous GPS position time series, J. Geophys. Res., 109, B03412, 2004.
    Wyatt, F. K., Displacements of surface monuments: Horizontal motion, J. Geophys. Res., 87, 979-989, 1982.
    Wyatt, F. K., Displacements of surface monuments: Vertical motion, J. Geophys. Res., 94, 1655-1664, 1989.
    Yu, S. B., H. Y. Chen, and L. C. Kuo, Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59, 1997.
    Zhang, J., Y. Bock, H. Johnson, P. Fang, S. Williams, J. Genrich, S. Wdowinski, and J. Behr, Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities, J. Geophys. Res., 102, 18,035-18,055, 1997.

    IGS website: http://igscb.jpl.nasa.gov/
    ITRF website: http://itrf.ensg.ign.fr/
    NGS website: http://www.ngs.noaa.gov/ANTCAL/
    SIO website: http://sio.ucsd.edu/
    GAMIT/GLOBK website: http://www-gpsg.mit.edu/~simon/gtgk/

    下載圖示 校內:2011-08-03公開
    校外:2011-08-03公開
    QR CODE