| 研究生: |
王鈺斌 Wang, Yu-Bin |
|---|---|
| 論文名稱: |
蘭嶼豬傷口陣列模式之建立 Establishment of wound array model in Lanyu pigs |
| 指導教授: |
黃玲惠
Huang, Lynn L.H. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 傷口癒合 、動物模式 、蘭嶼豬 、雷射都卜勒 |
| 外文關鍵詞: | Wound healing, Animal model, Lanyu pig, Laser Doppler |
| 相關次數: | 點閱:139 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在皮膚傷口癒合的研究中,大致可分為細胞體外試驗和動物體內試驗兩大類,其中又以動物試驗較能模擬人類傷口癒合之狀況,因此,建立理想且穩定的動物傷口模式更是不可或缺的部分。在本研究中,以建立蘭嶼豬多重傷口開創之動物模式為目的,希望以此多重傷口作為陣列模式,提供簡易且快速地藥物篩選平台。試驗設計以證實蘭嶼豬動物模式之可行性,以及規劃具有快速且高通量篩選特性之傷口陣列為主,結合各種癒合參數進行評估。試驗結果顯示,以手術刀與電動取皮機開創不同深度之傷口分別可控制傷口大小在7.5%以及16.1%之誤差之內,在位置效應上,不同陣列位置對組織學結構以及傷口癒合與收縮之作用皆無顯著差異(p>0.05)。結合癒合參數之評估,部分深度傷口與全深度傷口在第7和9天傷口癒合上有顯著差異(p<0.005)且在第13天傷口收縮上有極顯著差異(p<0.001)。另外,也應用雷射都卜勒血流影像儀分析不同深度之傷口血流訊號變化趨勢。由實驗結果顯示,傷口陣列模式具有高度穩定性且不受陣列位置效應所影響,並且可結合各項參數進行評估,藉此也證實蘭嶼豬背側皮膚作為多重傷口的陣列模式之可行性。
Wound repair is a complex biologic process which is influenced by many factors and compounds. Both in vitro and in vivo models are widely-used in wound healing research. The ideal animal model should reflect human wound healing problems, so it is very important for us to establish the stable and consistent animal models for wound healing studies.
The purpose of this study is to establish the wound array model in Lanyu pigs, and use the wound array model as screening platform for drug therapy. In wound creating, the scalpel and dermatome are used to create full-thickness wounds and partial-thickness wounds. The result showed that wound size standard deviation of each creating method is 100%±7.5% and 100%±16.1%. And there is no significant site effect in pig dorsal skin by histological feature, wound closure and wound contraction parameters (p>0.05). Then, we use these wound healing parameters to analyze the difference between partial- and full- thickness wounds. There were significant differences in wound closure in day 7 and day 9 (p<0.005) and wound contraction in day 13 (p<0.001). In addition, we also use Laser Doppler Imager to analyze the blood flow signal during wound healing. Therefore, we suggest that the wound array model in Lanyu pigs which can combine many parameters to estimate for healing quality is a good platform for screening drug therapy.
Berry, D. P. (1998). Human wound contraction collagen organization, fibroblasts, and myofibroblasts. Plast Reconstr Surg, 102, 124-130.
Brancato, S. K., & Albina, J. E. (2011). Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol, 178(1), 19-25.
Broughton, G., 2nd, Janis, J. E., & Attinger, C. E. (2006). The basic science of wound healing. Plast Reconstr Surg, 117(7 Suppl), 12S-34S.
Chang, J.-P. (2010). Left atrial enlargement induced by pure mitral regurgitation: time frame in a new swine model. Eur Surg Res, 45(2), 98-104.
Chih-Hung Chang, & Kuo., T.-F. (2006). Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials, 27(9), 1876-1888.
Davidson, J. M. (1998). Animal models for wound repair. Arch Dermatol Res, 290, S1-S11.
Diegelmann, R. F., & Evans, M. C. (2004). WOUND HEALING: AN OVERVIEW OF ACUTE, FIBROTIC AND DELAYED HEALING. Frontiers in Bioscience, 283-289.
Dorsett-Martin, W. A. (2004). Rat models of skin wound healing: A review. WOUND REP REG, 12, 591-599.
Ehrlich, H. P. (1988). Wound closure: evidence of cooperation between fibroblasts and collagen matrix. Eye (Lond), 2 ( Pt 2), 149-157.
Essex, T. J., & Byrne, P. O. (1991). A Laser Doppler Scanner for Imaging Blood Flow in Skin. J Biomed Eng, 13(3), 189-194.
Finn Gottrup. (2000). Models for use in wound healing research : a survey focusing on in vitro and in vivo adult soft tissue. 8, 83-96.
Gantwerker, E. A., & Hom, D. B. (2012). Skin: histology and physiology of wound healing. Clin Plast Surg, 39(1), 85-97.
Guo, S., & Dipietro, L. A. (2010). Factors affecting wound healing. J Dent Res, 89(3), 219-229.
Gurtner, G. C. (2008). Wound repair and regeneration. Nature, 453(7193), 314-321.
Hanna, J. R., & Giacopelli, J. A. (1997). A Review of Wound Healing and Wound Dressing Products. J Foot Ankle Surg, 36, 2-14.
Kuo, Y.-R., Chen, C.-C., Shih, H.-S., Goto, S., Huang, C.-W., Wang, C.-T., . . . Wei, F.-C. (2011). Prolongation of Composite Tissue Allotransplant Survival by Treatment with Bone Marrow Mesenchymal Stem Cells Is Correlated with T-Cell Regulation in a Swine Hind-Limb Model. Plast Reconstr Surg, 127(2), 569-579.
Mahdavian Delavary, B. (2011). Macrophages in skin injury and repair. Immunobiology, 216(7), 753-762.
Park, J. E., & Barbul, A. (2004). Understanding the role of immune regulation in wound healing. The American Journal of Surgery, 187(5), S11-S16.
Schafer, M., & Werner, S. (2008). Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol, 9(8), 628-638.
Schultz, G. S., & Wysocki, A. (2009). Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen, 17(2), 153-162.
Singer, A. J. (2003). Development of a Porcine Excisional Wound Model. Academic Emergency Medicine, 10(10), 1029-1033.
Singer, A. J., & Clark, R. A. F. (1999). Cutaneous wound healing. The New England Journal of Medicine, Volume 341, 738-746.
Sullivan, T. P. (2001). The pig as a model for human wound healing. WOUND REP REG, 9(2), 66-76.
Swindle, M. M. (2012). Swine as models in biomedical research and toxicology testing. Vet Pathol, 49(2), 344-356.
Tonnesen, M. G., Feng, X., & Clark, R. A. F. (2000). Angiogenesis in Wound Healing. Journal of Investigative Dermatology Symposium Proceeding, 5, 40-46.
Wang, J. F. (2001). The Pig as a Model for Excisional Skin Wound Healing: Characterization of the Molecular and Cellular Biology, and Bacteriology of the Healing Process. Comparative Medicine, 51(4), 341-348.
Wong, V. W. (2011). Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol, 2011, 969618.