| 研究生: |
柯雅淇 Ko, Ya-Chi |
|---|---|
| 論文名稱: |
銀/氧化鋅/還原氧化石墨烯奈米複合物的製備與應用 Preparation and application of Ag/ZnO/reduced graphene oxide nanocomposite |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 氧化鋅 、還原氧化石墨烯 、銀奈米粒子 、細菌偵測 、殺菌 |
| 外文關鍵詞: | zinc oxide, reduced graphene oxide, Ag nanoparticles, bacteria detection, bacteria killing |
| 相關次數: | 點閱:171 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究結合氧化鋅奈米粒子的光觸媒特性、還原氧化石墨烯的高比表面積與近紅外光光熱轉換特性、以及銀奈米粒子的殺菌能力與表面增強拉曼散射(SERS)特性,製備銀/氧化鋅/還原氧化石墨烯(Ag/ZnO/rGO)奈米複合物並探討其在細菌偵測與殺菌上的應用。首先利用溶熱法,在乙二醇與氫氧化納水溶液混合系統中,由醋酸鋅與氧化石墨烯(GO)製得ZnO/rGO奈米複合物,探討GO含量對ZnO奈米粒子在rGO表面之生長情況及光觸媒性質的影響,以獲得一具有較佳光觸媒活性之ZnO/rGO奈米複合物。其次,在含有硝酸銀的精胺酸水溶液中,以微波輔助法在ZnO/rGO奈米複合物表面沉積銀奈米粒子。所得之Ag/ZnO/rGO奈米複合物經證實,不僅可作為SERS的基材,有效用於大腸桿菌(E-Coli)的偵測,且可在黑暗中及全波段氙燈或近紅外光雷射照射下,藉由銀奈米粒子及光觸媒或近紅外光光熱殺菌作用,有效殺死大腸桿菌。而其殺菌效果以全波段氙燈照射最佳,其次是近紅外光雷射照射,顯示Ag/ZnO/rGO奈米複合物較單獨的銀奈米粒子可提供更多元與更佳的殺菌性能。據此,本研究所發展之Ag/ZnO/rGO奈米複合物確實兼具了細菌偵測與殺菌的功能。
In this study, Ag/ZnO/reduced graphene oxide (Ag/ZnO/rGO) nanocomposite was fabricated and its applications in the detection and killing of bacteria were investigated. This nanocomposite combined the photocatalytic property of ZnO nanoparticles, the high specific surface area and near infrared (NIR) photothermal conversion property of rGO, and the bacteria-killing capability and surface enhanced Raman scattering (SERS) property of Ag nanoparticles. At first, ZnO/rGO nanocomposite was prepared from zinc acetate and graphene oxide (GO) by solvothermal method in the mixture of ethylene glycol and NaOH aqueous solution. The influences of GO content on the growth of ZnO nanoparticles on the surface of rGO and the photocatalytic property were examined to obtain a ZnO/rGO nanocomposite with better photocatalytic activity. Secondly, in the silver nitrate-containing arginine solution, Ag nanoparticles were deposited on the surface of ZnO/rGO nanocomposite by microwave-assisted method. It was demonstrated that the resulting Ag/ZnO/rGO nanocomposite not only could be successfully used as the SERS substrate for the detection of E-Coli, but also could be used for the efficient killing of E-Coli in the dark and under the full Xe lamp or NIR irradiation via the Ag nanoparticles-related and photocatalytic or photothermal killing mechanisms. The full Xe lamp irradiation led to the best bacteria-killing efficiency and the second best one was observed under NIR irradiation. This revealed that the Ag/ZnO/rGO nanocomposite could provide more ways and better performance for killing bacteria as compared to the individual Ag nanoparticles. Accordingly, the Ag/ZnO/rGO nanocomposite developed in this study indeed possessed both the bacteria detection and killing properties.
[1] 王崇人, 神奇的奈米科學, 科學發展, 2002, 354, 48-51.
[2] 郭正次, 朝春光, 奈米結構材料科學, 全華, 臺北, 2004.
[3] 馬遠榮, 低維奈米材料, 科學發展, 2004, 382, 72-75.
[4] 洪偉修, 世界上最薄的材料-石墨烯, 98康熹化學報報, 1999, 980047, 1-5.
[5] 黃淑娟, 郭信良, 劉易昌, 葉裕洲, 新碳材時代-從奈米碳管到石墨烯, 工業材料雜誌, 2011, 291, 93-103.
[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306, 666-669.
[7] Geim gains korber award for graphene, Trac-Trends Anal. Chem., 2009, 28, IX-X.
[8] A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater., 2007, 6, 183-191.
[9] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, The structure of suspended graphene sheets, Nature, 2007, 446, 60-63.
[10] Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Experimental observation of the quantum hall effect and berry's phase in graphene, Nature, 2005, 438, 201-204.
[11] J. R. Williams, L. DiCarlo, C. M. Marcus, Quantum hall effect in a gate-controlled p-n junction of graphene, Science, 2007, 317, 638-641.
[12] X. Du, I. Skachko, F. Duerr, A. Luican, E. Y. Andrei, Fractional quantum hall effect and insulating phase of dirac electrons in graphene, Nature, 2009, 462, 192-195.
[13] F. Memarian, A. Fereidoon, M. Darvish Ganji, Graphene young’s modulus: Molecular mechanics and DFT treatments, Superlattices Microst., 2015, 85, 348-356.
[14] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, Y. Zhang, Direct chemical vapor deposition of graphene on dielectric surfaces, Nano Let., 2010, 10, 1542-1548.
[15] Y.-P. Hsieh, M. Hofmann, J. Kong, Promoter-assisted chemical vapor deposition of graphene, Carbon, 2014, 67, 417-423.
[16] J. Chen, B. Yao, C. Li, G. Shi, An improved hummers method for eco-friendly synthesis of graphene oxide, Carbon, 2013, 64, 225-229.
[17] P. Sutter, Epitaxial graphene: How silicon leaves the scene, Nat. Mater., 2009, 8, 171-172.
[18] C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 2008, 321, 385-388.
[19] E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Let., 2006, 6, 96-100.
[20] Y. Wang, X. Chen, Y. Zhong, F. Zhu, K. P. Loh, Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices, Appl. Phys. Lett., 2009, 95, 063302.
[21] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Fine structure constant defines visual transparency of graphene, Science, 2008, 320, 1308.
[22] N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents, Nano Let., 2008, 8, 4469-4476.
[23] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol., 2008, 3, 270-274.
[24] J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, H. Dai, Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy, J. Am. Chem. Soc., 2011, 133, 6825-6831.
[25] L. Sun, H. Yu, B. Fugetsu, Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution, J. Hazard. Mater., 2012, 203-204, 101-110.
[26] B. F. Machado, P. Serp, Graphene-based materials for catalysis, Catal. Sci. Technol., 2012, 2, 54-75.
[27] F. Schwierz, Graphene transistors, Nat. Nanotechnol., 2010, 5, 487-496.
[28] C. Botas, P. Álvarez, P. Blanco, M. Granda, C. Blanco, R. Santamaría, L. J. Romasanta, R. Verdejo, M. A. López-Manchado, R. Menéndez, Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods, Carbon, 2013, 65, 156-164.
[29] W. S. Hummers, R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, 80, 1339.
[30] Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc., 2008, 130, 5856-5857.
[31] 蘇清源, 石墨烯氧化物之特性與應用前景, 物理雙月刊, 2011, 4, 163-167.
[32] J. L. G. Fierro, Metal Oxides: Chemistry & Applications, Taylor & Francis Group, UK, 2006.
[33] 姜辛, 透明導電氧化物薄膜, 高等教育出版社, 臺北, 2008.
[34] 林修樂, 在氧化鋅奈米柱陣列上沉積銀奈米粒子以應用於光催化和表面增強拉曼散射, 國立成功大學化學工程學系碩士論文, 2012.
[35] A. Onodera, M. Takesada, Advances in Ferroelectrics, InTech, Slovenia, 2012.
[36] U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 2005, 98, 041301.
[37] 張湘瑜, 摻雜鎵之氧化鋅奈米柱薄膜的合成及特性研究, 國立成功大學化學工程學系碩士論文, 2009.
[38] S. Baron, Medical Microbiology 4th, Univ of Texas Medical Branch, USA, 1996.
[39] P. M. Fratamico, C. DebRoy, Y. Liu, The DNA sequence of the Escherichia coli O22 O-antigen gene cluster and detection of pathogenic strains belonging to E. Coli serogroups O22 and O91 by multiplex PCR assays targeting virulence genes and genes in the respective O-antigen gene clusters, Food Anal. Methods, 2008, 2, 169-179.
[40] P. Singleton, Bacteria in Biology: Biotechnology and Medicine 6th, Wiley, USA, 2004.
[41] H. E. Kubitschek, Cell volume increase in Escherichia coli after shifts to richer media, J. Bacteriol., 1990, 172, 94-101.
[42] 引起集體食物中毒的大腸桿菌O111, 牛頓科學雜誌, 2011, 46, 125.
[43] R. Bentley, R. Meganathan, Biosynthesis of vitamin K (menaquinone) in bacteria, Microbiol. Rev., 1982, 46, 241-280.
[44] R. L. Vogt, L. Dippold, Escherichia coli O157:H7 outbreak associated with consumption of ground beef, Public Health Rep., 2005, 120, 174-178.
[45] P. Geng, X. Zhang, Y. Teng, Y. Fu, L. Xu, M. Xu, L. Jin, W. Zhang, A DNA sequence-specific electrochemical biosensor based on alginic acid-coated cobalt magnetic beads for the detection of E. coli, Biosens. Bioelectron., 2011, 26, 3325-3330.
[46] S. D. Santos-Filho, C. L. Diniz, F. S. d. Carmo, A. d. S. d. Fonseca, M. Bernardo-Filho, Influence of an extract of juglans regia on the growth of Escherichia coli, on the electrophoretic profile of plasmid DNA and on the radiolabeling of blood constituents, Braz. Arch. Biol. Technol., 2008, 51, 163-168.
[47] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. A, 2000, 1, 1-21.
[48] A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem., 1997, 108, 1-35.
[49] N. Rioja, P. Benguria, F. J. Penas, S. Zorita, Competitive removal of pharmaceuticals from environmental waters by adsorption and photocatalytic degradation, Environ. Sci. Pollut. Res. Int., 2014, 21, 11168-11177.
[50] J. Auvinen, L. Wirtanen, The influence of photocatalytic interior paints on indoor air quality, Atmos. Environ., 2008, 42, 4101-4112.
[51] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37-38.
[52] S. N. Frank, A. J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder, J. Am. Chem. Soc., 1977, 99, 303-304.
[53] M. Cho, H. Chung, W. Choi, J. Yoon, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Water Res., 2004, 38, 1069-1077.
[54] R. Cai, K. Hashimoto, Y. Kubota, A.Fujishima, Increment of Photocatalytic Killing of Cancer Cells Using TiO2 with the Aid of Superoxide Dismutase. Chem. Lett., 1992, 3, 427-430.
[55] I. Juárez-Ramírez, E. Moctezuma, L. M. Torres-Martínez, C. Gómez-Solís, Short time deposition of TiO2 nanoparticles on SiC as photocatalysts for the degradation of organic dyes, Res. Chem. Intermediat., 2012, 39, 1523-1531.
[56] S. Park, J. C. Lee, D. W. Lee, J. H. Lee, Photocatalytic ZnO nanopowders prepared by solution combustion method for noble metal recovery, J. Mater. Sci., 2003, 38, 4493-4497.
[57] J. Li, Y. Ni, J. Liu, J. Hong, Preparation, conversion, and comparison of the photocatalytic property of Cd(OH)2, CdO, CdS and CdSe, J. Phys. Chem. Solids, 2009, 70, 1285-1289.
[58] W. Shi, Y. Yan, X. Yan, Microwave-assisted synthesis of nano-scale BiVO4 photocatalysts and their excellent visible-light-driven photocatalytic activity for the degradation of ciprofloxacin, Chem. Eng. J., 2013, 215-216, 740-746.
[59] X. Wu, C. Liu, X. Li, X. Zhang, C. Wang, Y. Liu, Effect of morphology on the photocatalytic activity of g-C3N4 photocatalysts under visible-light irradiation, Mat. Sci. Semicon. Proc., 2015, 32, 76-81.
[60] U. A. Joshi, J. R. Darwent, H. H. P. Yiu, M. J. Rosseinsky, The effect of platinum on the performance of WO3 nanocrystal photocatalysts for the oxidation of methyl orange and iso-propanol, J. Chem. Technol. Biot., 2011, 86, 1018-1023.
[61] S. Chaiwichian, B. Inceesungvorn, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, Highly efficient visible-light-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunction photocatalysts, Mater. Res. Bull., 2014, 54, 28-33.
[62] S. Niyomkarn, T. Puangpetch, S. Chavadej, Mesoporous-assembled In2O3–TiO2 mixed oxide photocatalysts for efficient degradation of azo dye contaminant in aqueous solution, Mat. Sci. Semicon. Proc., 2014, 25, 112-122.
[63] C. Zhang, L. Ai, L. Li, J. Jiang, One-pot solvothermal synthesis of highly efficient, daylight active and recyclable Ag/AgBr coupled photocatalysts with synergistic dual photoexcitation, J. Alloy. Compd., 2014, 582, 576-582.
[64] C. Guzmán, G. del Ángel, R. Gómez, F. Galindo-Hernández, C. Ángeles-Chavez, Degradation of the herbicide 2,4-dichlorophenoxyacetic acid over Au/TiO2–CeO2 photocatalysts: Effect of the CeO2 content on the photoactivity, Catal. Today, 2011, 166, 146-151.
[65] S. Li, L. Zhang, H. Wang, Z. Chen, J. Hu, K. Xu, J. Liu, Ta3N5-Pt nonwoven cloth with hierarchical nanopores as efficient and easily recyclable macroscale photocatalysts, Sci. Rep., 2014, 4, 3978.
[66] Y. Yan, H. Guan, S. Liu, R. Jiang, Ag3PO4/Fe2O3 composite photocatalysts with an n–n heterojunction semiconductor structure under visible-light irradiation, Ceram. Int., 2014, 40, 9095-9100.
[67] J. W. Xu, Z. D. Gao, K. Han, Y. Liu, Y. Y. Song, Synthesis of magnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria, ACS Appl. Mater. Inter., 2014, 6, 15122-15131.
[68] J. Zhang, L. Feng, J. Wei, X. Guo, W. Cao, Synthesis of SnO2/TiO2 nanocomposite photocatalysts by supercritical fluid combination technology, Chinese Sci. Bull., 2006, 51, 2050-2054.
[69] C.-C. Lin, Y.-J. Chiang, Feasibility of using a rotating packed bed in preparing coupled ZnO/SnO2 photocatalysts, J. Ind. Eng. Chem., 2012, 18, 1233-1236.
[70] Z. Liu, W. Xu, J. Fang, X. Xu, S. Wu, X. Zhu, Z. Chen, Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies, Appl. Surf. Sci., 2012, 259, 441-447.
[71] S. Ghasemi, S. R. Setayesh, A. Habibi-Yangjeh, M. R. Hormozi-Nezhad, M. R. Gholami, Assembly of CeO2–TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants, J. Hazard. Mater., 2012, 199-200, 170-178.
[72] Y.-L. Min, K. Zhang, Y.-C. Chen, Y.-G. Zhang, Enhanced photocatalytic performance of Bi2WO6 by graphene supporter as charge transfer channel, Sep. Purif. Technol., 2012, 86, 98-105.
[73] Y. Yao, C. Xu, S. Yu, D. Zhang, S. Wang, Facile synthesis of Mn3O4–reduced graphene oxide hybrids for catalytic decomposition of aqueous organics, Ind. Eng. Chem. Res., 2013, 52, 3637-3645.
[74] Z. Gao, J. Liu, F. Xu, D. Wu, Z. Wu, K. Jiang, One-pot synthesis of graphene–cuprous oxide composite with enhanced photocatalytic activity, Solid State Sci., 2012, 14, 276-280.
[75] C. Wu, Y. Zhang, S. Li, H. Zheng, H. Wang, J. Liu, K. Li, H. Yan, Synthesis and photocatalytic properties of the graphene–La2Ti2O7 nanocomposites, Chem. Eng. J., 2011, 178, 468-474.
[76] A. J. McQuillan, The discovery of surface-enhanced raman scattering, Notes Rec. Roy. Soc., 2009, 63, 105-109.
[77] S. Sriram, M. Bhaskaran, S. Chen, S. Jayawardhana, P. R. Stoddart, J. Z. Liu, N. V. Medhekar, K. Kalantar-Zadeh, A. Mitchell, Influence of electric field on SERS: Frequency effects, intensity changes, and susceptible bonds, J. Am. Chem. Soc., 2012, 134, 4646-4653.
[78] D.-Y. Wu, X.-M. Liu, S. Duan, X. Xu, B. Ren, S.-H. Lin, Z.-Q. Tian, Chemical enhancement effects in SERS spectra: A quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals, J. Phys. Chem. C., 2008, 112, 4195-4204.
[79] 林鼎晸, 朱仁佑, 張祐嘉, 汪天仁, 蔡枝松, 葉吉田, 王俊凱, 表面增強拉曼散射光譜的發展與應用, 工業材料雜誌, 2008, 261, 150-155.
[80] S. Sōmiya, R. Roy, Hydrothermal synthesis of fine oxide powders, Bull. Mater. Sci., 2000, 23, 453-460.
[81] J.-R. Kim, K.-Y. Lee, M.-J. Suh, S.-K. Ihm, Ceria–zirconia mixed oxide prepared by continuous hydrothermal synthesis in supercritical water as catalyst support, Catal. Today, 2012, 185, 25-34.
[82] M. A. Einarsrud, T. Grande, 1D oxide nanostructures from chemical solutions, Chem. Soc. Rev., 2014, 43, 2187-2199.
[83] R. A. Laudise, Hydrothermal Synthesis of Single Crystals, John Wiley & Sons, Inc., USA, 1962.
[84] J. O. Eckert, C. C. Hung-Houston, B. L. Gersten, M. M. Lencka, R. E. Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate, J. Am. Ceram. Soc., 1996, 79, 2929-2939.
[85] J. D. Wright, N. A.J.M. Sommerdijk, Sol-Gel Materials: Chemistry and Applications, CRC Press, UK, 2000.
[86] C. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, USA, 1990.
[87] M. A. Aegerter, M. Mennig, Sol-Gel Technologies for Glass Producers and User, Springer Science Business Media, Germany, 2004.
[88] K. Rath, Novel Materials from Solgel Chemistry, S&TR, 2005, 5, 24-26.
[89] B. L. Cushing, V. L. Kolesnichenko, C. J. O'Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev., 2004, 104, 3893-3946.
[90] 蘇一哲, 湯偉鉦, 溶膠-凝膠法製備奈米複合材料, 化學, 2012, 70, 39-51.
[91] 林宛嫺, 溶膠凝膠法與固相法合成鉭酸鈉及其應用於紫外光分解水製氫之研究, 國立成功大學化學工程學系碩士論文, 2006.
[92] 陳慧英, 黃定加, 朱秦億 溶膠凝膠法在薄膜製備上之應用, 化工技術, 1999, 80, 152-167.
[93] Q. Li, P. Dong, Preparation of nearly monodisperse multiply coated submicrospheres with a high refractive index, J Colloid. Interf. Sci., 2003, 261, 325-329.
[94] F. M. Pontes, E. R. Leite, E. J. H. Lee, E. Longo, J. A. Varela, Preparation, microstructural and electrical characterization of SrTiO3 thin films prepared by chemical route, J Eur. Ceram. Soc., 2001, 21, 419-426.
[95] J.-H. Lee, K.-H. Ko, B.-O. Park, Electrical and optical properties of ZnO transparent conducting films by the sol–gel method, J. Cryst. Growth, 2003, 247, 119-125.
[96] H. Youl Bae, G. Man Choi, Electrical and reducing gas sensing properties of ZnO and ZnO–CuO thin films fabricated by spin coating method, Sensor. Actuat. B: Chem., 1999, 55, 47-54.
[97] R. S. Sonawane, S. G. Hegde, M. K. Dongare, Preparation of titanium(IV) oxide thin film photocatalyst by sol–gel dip coating, Mater. Chem. Phys., 2003, 77, 744-750.
[98] C. D. Watkins, Active phased-array radars for airborne air defence, Military Microwaves '90, 1990, 136-141.
[99] P. Lidström, J. Tierney, B. Wathey, J. Westman, Microwave assisted organic synthesis—a review, Tetrahedron, 2001, 57, 9225-9283.
[100] T. Odedairo, J. Ma, Y. Gu, W. Zhou, J. Jin, X. S. Zhao, Z. Zhu, A new approach to nanoporous graphene sheets via rapid microwave-induced plasma for energy applications, Nanotechnology, 2014, 25, 495604.
[101] T. Tatsuma, S.-i. Tachibana, T. Miwa, D. A. Tryk, A. Fujishima, Remote bleaching of methylene blue by UV-irradiated TiO2 in the gas phase, J. Phys. Chem. B, 1999, 103, 8033-8035.
[102] W. Choi, Pure and modified TiO2 photocatalysts and their environmental applications, Catal. Surv. Asia, 2006, 10, 16-28.
[103] S. G. Babu, V. Ramalingam, B. Neppolian, D. D. Dionysiou, M. Ashokkumar, Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst, J. Hazard. Mater., 2015, 291, 83-92.
[104] Y. Nosaka, M. Nishikawa, A. Y. Nosaka, Spectroscopic investigation of the mechanism of photocatalysis, Molecules, 2014, 19, 18248-18267.
[105] Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima, Photocatalytic bactericidal effect of TiO2 thin films: Dynamic view of the active oxygen species responsible for the effect, J Photochem. Photobilo. A: Chem., 1997, 106, 51-56.
[106] 王翠蓮, 表面增強拉曼光譜技術應用於單分子偵測及生物分子定量分析, 國立陽明大學醫學工程研究所碩士論文, 2004.
[107] A. T. Tu, Raman Spectroscopy in Biology Principles and Applications, John Wiley & Sons, Inc., USA , 1982.
[108] R. L. McCreery, Raman Spectroscopy for Chemical Analysis, John Wiley & Sons, Inc., USA , 2005.
[109] J. L. Hammond, N. Bhalla, S. D. Rafiee, P. Estrela, Localized surface plasmon resonance as a biosensing platform for developing countries, Biosensors, 2014, 4, 172-188.
[110] K. Ueno, H. Misawa, Spectral properties and electromagnetic field enhancement effects on nano-engineered metallic nanoparticles, PCCP Phys. Chem. Ch. Ph., 2013, 15, 4093-4099.
[111] S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, R. P. Van Duyne, Creating, characterizing, and controlling chemistry with SERS hot spots, PCCP Phys. Chem. Ch. Ph., 2013, 15, 21-36.
[112] H. Fan, X. Zhao, J. Yang, X. Shan, L. Yang, Y. Zhang, X. Li, M. Gao, ZnO–graphene composite for photocatalytic degradation of methylene blue dye, Catal. Commun., 2012, 29, 29-34.
[113] N. H. Kim, T. Kuila, J. H. Lee, Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application, J. Mater. Chem. A., 2013, 1, 1349-1358.
[114] N. E. Mircescu, H. Zhou, N. Leopold, V. Chis, N. P. Ivleva, R. Niessner, A. Wieser, C. Haisch, Towards a receptor-free immobilization and SERS detection of urinary tract infections causative pathogens, Anal. Bioanal. Chem., 2014, 406, 3051-3058.