簡易檢索 / 詳目顯示

研究生: 張純菁
Chang, Chun-Ching
論文名稱: 高分子電紡絲在光學上的應用
Polymeric Electrospun Nanofibers in Optical Applications
指導教授: 郭昌恕
Kuo, Changshu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 100
中文關鍵詞: 高分子吸收螢光強化電紡絲奈米纖維
外文關鍵詞: fluorescence enhancement, absorption, electrospinning, polymer, nanofibers
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電紡絲技術來製備不同濃度的聚甲基丙烯酸甲酯(polymethyl methacrylate, PMMA)奈米纖維,其吸收光譜中出現了特殊的吸收峰。以SEM測量纖維的直徑來了解直徑大小與吸收峰位置的關係,同時在分光光譜儀的輔助下,改變纖維層厚度、纖維間介質以及光對纖維層的入射角來探討光與PMMA電紡絲之間的互動。此外我們也使用了模擬軟體來試著解釋這種特殊的吸收現象
    為了進一步觀察這種特殊吸收峰在螢光強化上的應用,我們也製備了PMMA/Coumarin 6 以及 PMMA/ Ru(bpy)3Cl2 兩種有添加染料的複合纖維。利用PMMA濃度及電紡絲時間的調整來製作不同直徑大小及厚度的奈米複合纖維層,觀察其吸收及光致發光螢光光譜圖,並以PMMA重量校正發光強度來比較其螢光強化的效能。同樣成分的複合薄膜也被製備來與電紡絲纖維做比較。由實驗的數據可知,由PMMA電紡絲纖維所造成的特殊吸收峰確實可以用來強化螢光訊號。

    Electrospun nanofibers from optical polymers, such as PMMA (polymethyl methacrylate) exhibit remarkable interaction with ambient light as shown in their UV-vis spectra. Diameters of electrospun PMMA nanofibers determined by SEM images illustrate the linear dependence on the absorption peaks. UV-vis absorption spectra of these PMMA nanofibers with difference deposited thickness, incident angles, and the media within fiber spacing were also carefully investigated. In addition, the software simulation was also conducted in order to further explain the light absorption* phenomenon of PMMA nanofibers.
    Fluorescent dyes, including Coumarin 6 and Ru(bpy)3Cl2, were utilized to examine the possible light trapping by the electrospun nanofibers. PMMA/Coumarin 6 and PMMA/Ru(bpy)3Cl2 composite nanofibers were electrospun and investigated in terms of the fluorescence enhancement as a function of deposited thicknesses. The adsorption and emission spectra of dye-doped PMMA nanofibers with various PMMA/dye concentrations and deposited thickness were analyzed. Fluorescence intensities were carefully normalized by PMMA weight per unit area, so that the emission enhancement could be quantified and compared. According to the experimental results, the fluorescence enhancement from dye-doped PMMA nanofibers did reveal the relationship with the deposited thicknesses of electrospun nanofibers. Especially in the UV region, the electrospun PMMA nanofibers successfully confined the incident irradiations within the nanostructures.

    誌謝…………………………………………………………………………I 摘要…………………………………………………………………II Abstract ......................................................................................................... III Contents........................................................................................................... V List of tables..............................................................................................VIII List of illustration ..........................................................................................IX 1. Introduction ................................................................................................. 1 1-1 Fabrication of polymeric fibers............................................................. 1 1-2 Electrospinning ..................................................................................... 4 1-3 Electrospun fluorescent fibers .............................................................. 8 1-4 Fluorescence Enhancements ............................................................... 10 1-5 Optical fibers....................................................................................... 13 1-6 OptiFDTD simulation software .......................................................... 16 1-7 Research motivation............................................................................ 17 2. Experiments ............................................................................................... 19 2-1 Chemicals and Instruments................................................................. 19 2-1-1 Chemicals ................................................................................. 19 2-1-2 Instruments ............................................................................... 21 2-1-3 Electrospinning apparatus setup ............................................... 22 2-2 Experimental process .......................................................................... 24 2-2-1 PMMA solutions preparation.................................................... 24 2-2-2 Electrospinning Process............................................................ 24 2-2-3 Characterization of electrospun fibers...................................... 25 2-3 Analysis Instruments........................................................................... 26 2-3-1 Scanning Electron Microscopy (SEM)..................................... 26 2-3-2 UV-visible Spectrophotometer (UV-Vis) ................................. 27 2-3-3 Fluorescence Spectrophotometer.............................................. 29 3. Results and Discussions ............................................................................ 31 3-1 The morphology of electrospun PMMA nanofibers........................... 31 3-2 Interaction between light and electrospun PMMA fibers................... 35 3-2-1 UV-Vis absorption of electrospun PMMA nanofibers ........... 36 3-2-2 Fiber diameter influence in UV-Vis absorption of PMMA fibers....................................................................38 3-2-3 Scatter effect influence in UV-Vis absorption of PMMA fibers........................................................................ 44 3-2-4 Space medium influence in UV-Vis absorption of PMMA fibers........................................................................ 47 3-2-5 Incident angle influence in UV-Vis absorption of PMMA fibers........................................................................ 50 3-2-6 Simulation of interaction between light and PMMA nanofibers .................................................................... 55 3-3 Optical applications of electrospun PMMA/dye nanofibers .............. 64 3-3-1 Electrospun PMMA/Coumarin 6 fibers.................................... 65 3-3-2 Fluorescence enhancement of electrospun PMMA/Coumarin 6 fibers ....................................................... 71 3-3-3 Electrospun PMMA/Ru(bpy)3Cl2 fibers................................... 77 3-3-4 Fluorescence Enhancement of electrospun PMMA/Ru(bpy)3Cl2 fibers....................................................... 82 4. Conclusion.................................................................................................. 87 5. Reference.................................................................................................... 88

    1. Berry, S. M.; Harfenist, S. A.; Cohn, R. W.; Keynton, R. S., Characterization of micromanipulator-controlled dry spinning of micro- and sub-microscale polymer fibers. Journal of Micromechanics and Microengineering 2006, 16, (9), 1825-1832.
    2. Chanda, M.; Roy, S. K., Plastics Technology Handbook. 1987.
    3. William D. Callister, J., Materials Science and Engineering - An Introduction. 2003.
    4. Huanga, Z.-M.; Zhangb, Y.-Z.; Kotakic, M.; Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003, 63, 2223-2253.
    5. Wnek, G. E.; Carr, M. E.; Simpson, D. G.; Bowlin, G. L., Electrospinning of Nanofiber Fibrinogen Structures. Nano Lett. 2003, 3, (2), 213-216.
    6. Ching-Yi Chen, J.-W. W. M.-H. H., Polyion Complex Nanofibrous Structure Formed by Self-Assembly of Chitosan and Poly(acrylic acid). Macromolecular Materials and Engineering 2006, 291, (2), 123-127.
    7. Liu, D.; Zhang, H.; Grim, P. C. M.; De Feyter, S.; Wiesler, U. M.; Berresheim, A. J.; Mullen, K.; De Schryver, F. C., Self-Assembly of Polyphenylene Dendrimers into Micrometer Long Nanofibers: An Atomic Force Microscopy Study. Langmuir 2002, 18, (6), 2385-2391.
    8. Jiro Shimizu, T. K., Dynamics and evolution of structure in fiber extrusion. Journal of Applied Polymer Science 2002, 83, (3), 539-558.
    9. Kim, G. M.; Michler, G. H.; Potschke, P., Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer 2005, 46, (18), 7346.
    10. Chronakis, I. S., Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process - A review. Journal of Materials Processing Technology 2005, 167, (2-3), 283.
    11. Sigmund, W.; Yuh, J.; Park, H.; Maneeratana, V.; Pyrgiotakis, G.; Daga, A.; Taylor, J.; Nino, J. C., Processing and structure relationships in electrospinning of ceramic fiber systems. Journal of the American Ceramic Society 2006, 89, (2), 395.
    12. Jo, S. M.; Song, M. Y.; Ahn, Y. R.; Park, C. R.; Kim, D. Y., Nanofibril formation of electrospun TiO2 fibers and its application to dye-sensitized solar cells. Journal of Macromolecular Science - Pure and Applied Chemistry 2005, 42 A, (11), 1529.
    13. Taylor, G. I., Electrically Driven Jets. Proc. R. Soc. London, Ser. A 1969, 20, 1457.
    14. Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Tan, N. C. B., Effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42, (1), 261.
    15. Sukigara, S.; Gandhi, M.; Ayutsede, J.; Micklus, M.; Ko, F., Regeneration of Bombyx mori silk by electrospinning - Part 1: Processing parameters and geometric properties. Polymer 2003, 44, (19), 5721.
    16. Lee, J. S.; Choi, K. H.; Ghim, H. D.; Kim, S. S.; Chun, D. H.; Kim, H. Y.; Lyoo, W. S., Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science 2004, 93, (4), 1638.
    17. Theron, S. A.; Zussman, E.; Yarin, A. L., Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004, 45, (6), 2017.
    18. Tan, S. H.; Inai, R.; Kotaki, M.; Ramakrishna, S., Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 2005, 46, (16), 6128.
    19. Shin, C.; Chase, G. G., Separation of liquid drops from air by glass fiber filters augmented with polystyrene nanofibers. Journal of Dispersion Science and Technology 2006, 27, (1), 5.
    20. Hong, K. H.; Kang, T. J., Polyaniline-nylon 6 composite nanowires prepared by emulsion polymerization and electrospinning process. Journal of Applied Polymer Science 2006, 99, (3), 1277.
    21. Pawlowski, K. J.; Belvin, H. L.; Raney, D. L.; Su, J.; Harrison, J. S.; Siochi, E. J., Electrospinning of a micro-air vehicle wing skin. Polymer 2003, 44, (4), 1309.
    22. Riboldi, S. A.; Sampaolesi, M.; Neuenschwander, P.; Cossu, G.; Mantero, S., Electrospun degradable polyesterurethane membranes: Potential scaffolds for skeletal muscle tissue engineering. Biomaterials 2005, 26, (22), 4606.
    23. Khil, M.-S.; Cha, D.-I.; Kim, H.-Y.; Kim, I.-S.; Bhattarai, N., Electrospun Nanofibrous Polyurethane Membrane as Wound Dressing. Journal of Biomedical Materials Research - Part B Applied Biomaterials 2003, 67, (2), 675.
    24. Luong-Van, E.; Grondahl, L.; Chua, K. N.; Leong, K. W.; Nurcombe, V.; Cool, S. M., Controlled release of heparin from poly(ε-caprolactone) electrospun fibers. Biomaterials 2006, 27, (9), 2042.
    25. Demir, M. M.; Gulgun, M. A.; Menceloglu, Y. Z.; Erman, B.; Abramchuk, S. S.; Makhaeva, E. E.; Khokhlov, A. R.; Matveeva, V. G.; Sulman, M. G., Palladium Nanoparticles by Electrospinning from Poly(acrylonitrile-co-acrylic acid)-PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity. Macromolecules 2004, 37, (5), 1787.
    26. Lyons, J.; Li, C.; Ko, F., Melt-electrospinning part I: Processing parameters and geometric properties. Polymer 2004, 45, (22), 7597.
    27. Theron, A.; Zussman, E.; Yarin, A. L. In Electrostatic field-assisted alignment of electrospun nanofibres, Bethesda, MR, United States, 2001; Institute of Physics Publishing, Bristol, BS1 6BE, United Kingdom: Bethesda, MR, United States, 2001; p 384.
    28. Katta, P.; Alessandro, M.; Ramsier, R. D.; Chase, G. G., Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano Lett. 2004, 4, (11), 2215-2218.
    29. Sun, Z.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A., Compound Core-Shell Polymer Nanofibers by Co-Electrospinning. Advanced Materials 2003, 15, (22), 1929.
    30. Jiang, H.; Hu, Y.; Li, Y.; Zhao, P.; Zhu, K.; Chen, W., A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. Journal of Controlled Release 2005, 108, (2-3), 237.
    31. Zhang, Y. Z.; Venugopal, J.; Huang, Z. M.; Lim, C. T.; Ramakrishna, S., Characterization of the surface biocompatibility of the electrospun PCL-Collagen nanofibers using fibroblasts. Biomacromolecules 2005, 6, (5), 2583.
    32. Pinto, N. J.; Carrion, P. L.; Ayala, A. M.; Ortiz-Marciales, M., Temperature dependence of the resistance of self-assembled polyaniline nanotubes doped with 2-acrylamido-2-methyl-1-propanesulfonic acid. Synthetic Metals 2005, 148, (3), 271.
    33. Zussman, E.; Yarin, A. L.; Bazilevsky, A. V.; Avrahami, R.; Feldman, M., Electrospun polyacrylonitrile/poly(methyl methacrylate)-derived turbostratic carbon micro-/nanotubes. Advanced Materials 2006, 18, (3), 348.
    34. Czaplewski, D.; Kameoka, J.; Craighead, H. G., Nonlithographic approach to nanostructure fabrication using a scanned electrospinning source. Journal of Vacuum Science & Technology B 2003, 21, (6), 2994-2997.
    35. Kameoka, J.; Verbridge, S. S.; Liu, H.; Czaplewski, D. A.; Craighead, H. G., Fabrication of Suspended Silica Glass Nanofibers from Polymeric Materials Using a Scanned Electrospinning Source. Nano Lett. 2004, 4, (11), 2105-2108.
    36. Liu, H.; Reccius, C. H.; Craighead, H. G., Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor. Applied Physics Letters 2005, 87, (25), 253106.
    37. Lin, J.-N., UV and Thermally Induced in-situ Synthesis of Metallic Nanoparticles Encapsulated in Electrospun Polymer Nanofibers. 2006.
    38. Cucchi, I.; Spano, F.; Giovanella, U.; Catellani, M.; Varesano, A.; Calzaferri, G.; Botta, C., Fluorescent electrospun nanofibers embedding dye-loaded zeolite crystals. Small 2007, 3, (2), 305-309.
    39. Kameoka, J.; Czaplewski, D.; Liu, H.; Craighead, H. G., Polymeric nanowire architecture. Journal of Materials Chemistry 2004, 14, (10), 1503-1505.
    40. Kameoka, J.; Orth, R.; Yang, Y.; Czaplewski, D.; Mathers, R.; Coates, G. W.; Craighead, H. G., A scanning tip electrospinning source for deposition of oriented nanofibres. Nanotechnology 2003, 14, (10), 1124-1129.
    41. Yan, E.; Wang, C.; Huang, Z.; Xin, Y.; Tong, Y., Synthesis and characterization of 1D tris(8-quinolinolato) aluminum fluorescent fibers by electrospinning. Materials Science and Engineering A 2007, 464, (1-2), 59-62.
    42. Tomczak, N.; Gu, S.; Han, M.; van Hulst, N. F.; Julius Vancso, G., Single light emitters in electrospun polymer nanofibers: Effect of local confinement on radiative decay. European Polymer Journal 2006, 42, (10), 2205-2210.
    43. Wang, X.; Lee, S.-H.; Ku, B.-C.; Samuelson, L. A.; Kumar, J. In Synthesis and electrospinning of a novel fluorescent polymer PMMA-PM for quenching-based optical sensing, Lowell, MA, United States, 2002; Marcel Dekker Inc.: Lowell, MA, United States, 2002; pp 1241-1249.
    44. Zhao, Q.; Huang, Z.; Wang, C.; Zhao, Q.; Sun, H.; Wang, D., Preparation of PVP/MEH-PPV composite polymer fibers by electrospinning and study of their photoelectronic character. Materials Letters 2007, 61, (11-13), 2159-2163.
    45. Zhang, W.; Yan, E.; Huang, Z.; Wang, C.; Xin, Y.; Zhao, Q.; Tong, Y., Preparation and study of PPV/PVA nanofibers via electrospinning PPV precursor alcohol solution. European Polymer Journal 2007, 43, (3), 802-807.
    46. Schlecht, S.; Tan, S.; Yosef, M.; Dersch, R.; Wendorff, J. H.; Jia, Z.; Schaper, A., Toward Linear Arrays of Quantum Dots via Polymer Nanofibers and Nanorods. Chem. Mater. 2005, 17, (4), 809-814.
    47. Liu, H.; Edel, J. B.; Bellan, L. M.; Craighead, H. G., Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots. Small 2006, 2, (4), 495-499.
    48. Lakowicz, J. R.; Chowdhurya, M. H.; Raya, K.; Zhanga, J.; Fua, Y.; Ramachandram; Badugua; Sabanayagama, C. R.; Nowaczyka, K.; Szmacinskia, H.; Aslanb, K.; Geddes, C. D., Plasmon-controlled fluorescence: A new detection technology. Peoceedings of SPIE 2006, 6099.
    49. Stranik, O.; McEvoy, H. M.; McDonagh, C.; MacCraith, B. D., Plasmonic enhancement of fluorescence for sensor applications. Sensors and Actuators B 2005, 107, 148-153.
    50. Kulakovich, O.; Strekal, N.; Artemyev, M.; Stupak, A.; Maskevich, S.; Gaponenko, S., Improved method for fluorophore deposition atop a polyelectrolyte spacer for quantitative study of distance-dependent plasmon-assisted luminescence. Nanotechnology 2006, 17, 5201-5206.
    51. Nakamura, T.; Hayashi, S., Enhancement of dye fluorescence by gold nanoparticles: Analysis of particle size dependence. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 2005, 44, (9 A), 6833-6837.
    52. Hayakawa, T.; Furuhashi, K.; Nogami, M., Enhancement of 5D0-7FJ Emissions of Eu3+ Ions in the Vicinity of Polymer-Protected Au Nanoparticles in Sol-Gel-Derived B2O3-SiO2 Glass. J. Phys. Chem. B 2004, 108, (31), 11301-11307.
    53. Uematsu, T.; Maenosono, S.; Yamaguchi, Y., Photoinduced Fluorescence Enhancement in Mono- and Multilayer Films of CdSe/ZnS Quantum Dots: Dependence on Intensity and Wavelength of Excitation Light. J. Phys. Chem. B 2005, 109, (18), 8613-8618.
    54. Willard, D. M.; Carillo, L. L.; Jung, J.; Van Orden, A., CdSe-ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein-Protein Binding Assay. Nano Lett. 2001, 1, (9), 469-474.
    55. Andrew, P.; Barnes, W. L., Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons. Science 2004, 306.
    56. Zhang, Y.-Q.; Wang, J.-X.; Ji, Z.-Y.; Hu, W.-P.; Jiang, L.; Song, Y.-L.; Zhu, D.-B., Solid-state fluorescence enhancement of organic dyes by photonic crystals. Journal of Materials Chemistry 2007, 17, (1), 90-94.
    57. Lahart, M. J., Analysis of a cylindrical dielectric waveguide with three regions by use of an invariant mode-definition parameter. Journal of the Optical Society of America 1998, 15, (3), 727-735.
    58. Ungar, S., Fiber Optics : Theory and Applications. 1989.
    59. H. Ma, A. K. Y. J. L. R. D., Polymer-Based Optical Waveguides: Materials, Processing, and Devices. Advanced Materials 2002, 14, (19), 1339-1365.
    60. Potenza, M., Optical fiber amplifiers for telecommunication systems. IEEE Communications Magazine 1996, 34, (8), 96-102.
    61. Chang, G.-K.; Jia, Z.; Yu, J.; Ellinas, G. In Super broadband optical wireless over optical fiber network architecture, Montreal, QC, Canada, 2007; Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States: Montreal, QC, Canada, 2007; pp 344-345.
    62. Yuan, J.; Zhan, C.; Sun, Q.; Liu, D.; He, Y. In A novel distributed sensor using optical fiber, Shanghai, China, 2005; International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States: Shanghai, China, 2005; p 60191.
    63. Awad, H. R.; Vlasenko, O. A.; Zavartsev, Y. D.; Zagumennyi, A. I.; Kozlov, V. A.; Studenikin, P. A.; Shcherbakov, I. A. In Laser diode optical fiber pumping system for solid state lasers, St. Petersburg, Russia, 1996; Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA: St. Petersburg, Russia, 1996; pp 250-255.
    64. Lomer, M.; Contreras, K. In Non-contact torsion transducer based on the measurement of Moire patterns using plastic optical fibers, Munich, Germany, 2007; SPIE, Bellingham WA, WA 98227-0010, United States: Munich, Germany, 2007; p 66161.
    65. Kao, C. K., Optical fiber systems :technology, design, and applications 1982.
    66. Zhang, Z.-Y.; Mao, Q.-M.; Yan, Y.-B. In Key technology of optical fiber level gauge -optical antenna used for incident optical fibers, Xinjiang, China, 2006; International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States: Xinjiang, China, 2006; p 62802.
    67. Ritzhaupt-Kleissl, E.; Bohm, J.; Haubelt, J.; Hanemann, T., Process Chain for Tailoring the Refractive Index of Thermoplastic Optical Materials using Ceramic Nanoparticles. Advanced Engineering Materials 2005, 7, (6), 540-545.
    68. Quan, X., Plastic optical fibers - pipe-dream or reality? American Chemical Society, Polymer Priprints, Division of Polymer Chemistry 1999, 40, (2), 1279-1280.
    69. Taguenang, J. M.; Kassu, A.; Ruffin, P. B.; Brantley, C.; Edwards, E.; Sharma, A., Reversible UV degradation of PMMA plastic optical fibers. Optics Communications 2008, 281, (8), 2089-2092.
    70. Ge, W.-P.; Guo, X.-J.; Yin, Z.-M., Experimental research on polystyrene optical fiber under irradiation. Guangdianzi Jiguang/Journal of Optoelectronics Laser 2003, 14, (1), 26-28.
    71. Shintaku, T.; Sugita, E.; Nagase, R.; Watanabe, J. In Highly stable low-insertion- and high-return-loss PC optical fiber connectors, Brighton, Engl, 1988; Publ by IEE, Stevenage, Engl: Brighton, Engl, 1988; pp 599-602.
    72. Andreopoulos, A. G.; Tarantili, P. A., Water sorption characteristics of epoxy resin-UHMPE fibers composites. Journal of Applied Polymer Science 1998, 70, (4), 747-755.
    73. Basak, D.; Karan, S.; Mallik, B., Size selective photoluminescence in poly(methyl methacrylate) thin solid films with dispersed silver nanoparticles synthesized by a novel method. Chemical Physics Letters 2006, 420, (1-3), 115-119.
    74. Esinenco, D.; Budianu, E.; Bineva, I.; Andrijasevic, D.; Manea, E.; Brenner, W.; Muller, R., Integrated optical proximity microsensor. Journal of Luminescence 2006, 121, (2 SPEC ISS), 394-398.
    75. Muller, R.; Esinenco, D.; Kusko, M.; Obreja, P.; Manea, E.; Ligor, O.; Apostol, D.; Damian, V.; Mateescu, M.; Moldovan, L.; Tcacenco, L.; Psoma, S. D.; Schneider, A.; Huq, E. In Integrated polymeric mach zehnder interferometer for biosesing applications, Sinaia, Romania, 2005; Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States: Sinaia, Romania, 2005; pp 227-230.
    76. Chen, H.-C., Fabrications of Concentration Gradient Multilayers for Organic Photoelectric Devices. 2006.
    77. Koombhongse, S.; Liu, W.; Reneker, D. H., Flat polymer ribbons and other shapes by electrospinning. Journal of Polymer Science, Part B: Polymer Physics 2001, 39, (21), 2598-2606.
    78. Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F., Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 2002, 35, (22), 8456-8466.
    79. Piperno, S.; Lozzi, L.; Rastelli, R.; Passacantando, M.; Santucci, S., PMMA nanofibers production by electrospinning. Applied Surface Science 2006, 252, (15), 5583-5586.
    80. Dong, H.; Nyame, V.; Macdiarmid, A. G.; Jones Jr, W. E., Polyaniline/poly(methyl methacrylate) coaxial fibers: The fabrication and effects of the solution properties on the morphology of electrospun core fibers. Journal of Polymer Science, Part B: Polymer Physics 2004, 42, (21), 3934-3942.
    81. Macossay, J.; Marruffo, A.; Rincon, R.; Eubanks, T.; Kuang, A., Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate). Polymers for Advanced Technologies 2007, 18, (3), 180-183.
    82. Davis, J. L.; Walls, H. J.; Han, L.; Walker, T. A.; Tufts, J. A.; Andrady, A.; Ensor, D. In Use of nanofibers in high-efficiency solid-state lighting, San Diego, CA, United States, 2007; SPIE, Bellingham WA, WA 98227-0010, United States: San Diego, CA, United States, 2007; p 666916.
    83. Helgeson, M. E.; Wagner, N. J., A correlation for the diameter of electrospun polymer nanofibers. AIChE Journal 2007, 53, (1), 51-55.
    84. Cheng, J.-A.; Chang, C.-P.; Chen, C.-H.; Lin, M.-S., The fluorescent quantum efficiency of copolymers containing coumarin-6 at the side-chain. Journal of Polymer Research 2005, 12, (1), 53-59.
    85. Li, D.; Zhang, J.; Anpo, M., The luminescence properties of coumarin-6 within Ti-HMS. Journal of Luminescence 2006, 116, (1-2), 73-78.
    86. Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43, (16), 4403.

    下載圖示 校內:2010-08-20公開
    校外:2013-08-20公開
    QR CODE