簡易檢索 / 詳目顯示

研究生: 侯建安
Hou, Jian-An
論文名稱: 應用於射頻前端系統的集成元件小型化耦合器與CMOS 壓控振盪器之研製
Compact Couplers Using Lumped Elements and CMOS Voltage Controlled Oscillators for the RF Front-end System Applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 140
中文關鍵詞: 小型化耦合器諧波抑制次諧波混頻器低相位雜訊考畢茲壓控振盪器閘極電感回授
外文關鍵詞: compact couplers, harmonic suppression, sub-harmonical mixer, low phase noise, CMOS Colpitts VCO, gate inductive feedback
相關次數: 點閱:142下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來對於無線通訊系統之研究有著卓越的發展,而目前對於射頻前端系統,低功率、低成本與小體積為現今無線通訊的主要訴求,為了實現以上的條件,便需要先進之製程技術與創新的電路設計來互相配合。在射頻收發器模組中,3dB耦合電路、次諧波混頻器與壓控振盪器對於頻率轉換的特性扮演著重要角色,但這些關鍵零組件,在傳統架構中不論是電路大小或是效能方面都有值得研究改善的空間;其中,3dB 耦合器經常使用於平衡式次諧波混頻器或放大器的架構中,來達到功率平衡輸出或結合的目的,但是其所需面積經常過大而不易實現於晶片中;另一方面,這些非線性元件經常產生諧波干擾訊號,故輸出端耦合器又肩負著諧波抑制的功能 因此,本論文針對微型化耦合器來做一研究並將其應用於單晶次諧波混頻器上,最後更進一步將諧波抑制功能予以整合。另一方面,採用CMOS 製程技術實現壓控震盪器在操作電壓、消耗功率及系統成本等考量皆具有一定之優勢;但由於矽基板的高頻介電損耗相較於其他基板製程來的高,且隨著製程的進步,元件雜訊也相對提高,這些因素都造成相位雜訊的退化。故論文中,也將探討CMOS 壓控振盪器架構之設計與實現,並持續針對其操作電壓、相位雜訊、功率消耗等特性做一改良。在3dB 耦合電路研究、實現與應用方面,論文中提出一個使用電感、電容集成元件的新穎式九十度耦合器。相較於傳統小型化耦合器,除了更有效節省面積外,也提供了一個更為寬頻的操作頻寬(~18%)。另外,此對稱性架構不需要任何穿孔到地,這在印刷電路板或是其他高頻基板實現時,將帶來更多便利性且較不耗費面積;而藉由ABCD 矩陣分析,我們可證明此架構為一個理想九十度耦合器。
    此外,我們也進一步地研製具有諧波抑制功能的90 度和180 度小型化耦合器,所提出兩個2.45GHz 耦合器,利用諧波頻率拒斥共振器來同時達到小型化耦合器所需高、低通特性和所需頻帶諧波抑制的功能,進而減少集成元件的使用。除此之外,我們將提出的微型化耦合器成功實現於一個單晶Ka 頻帶的平衡式次諧波混頻器上,在此提出的架構中,利用LO 3 次諧波進行混頻,其相較於傳統平衡式混頻器利用2 次諧波混頻的方式,可進一步將LO 操作頻率由Ku band 減少至X band,這將有利於減輕系統上本地震盪源之負擔;同時,也希望將傳統高頻系統中三倍頻器的功能來加以取代,以實現系統高度整合的目的。在本地振盪源研究方面,我們設計應用於S頻段與C頻段三個CMOS震盪器,並藉由其量測數據來探討在不同架構和應用上其特性表現。論文中,提出一個低操作電壓1V,採用九十奈米製程的共源極PMOS單端壓控振盪器,並加上靜電防護於此電路中;此架構利用汲極電感回授與寄生電容產生負電阻並採用單顆PMOS做為振盪源的主體,將元件雜訊予以最小化;當操作頻率在1.75-GHz頻段,整體功率消耗5.54mW時,有-107dBc/Hz@1MHz的相位雜訊。另外,我们提出使用交錯耦合式PMOS尾電流源的技術,將傳統考畢茲架構中電流源退化相位雜訊的缺點來做一改善,並將其成功實現於一個5-GHz相位雜訊-100.3dBc@100kHz的考畢茲差動壓控振盪器。最後,吾人則是利用閘極電感回授技術來增強負電阻效應,改善傳統考畢茲振盪器起振條件,進而降低原先的消耗功率,並成功實現於一個7.9-GHz、功率消耗4.9mW的全PMOS考畢茲差動壓控振盪器。

    Wireless communications research has experienced a remarkable renaissance in the last decade. Low power, low cost, and a compact size are the essential requirements for modern RF frond-end systems. In RF transceiver, voltage controlled oscillators (VCOs) and 3dB couplers are essential blocks but these components based on conventional architectures still have several issues and are worth to be investigated. The physically size of the 3dB couplers are too larger to be integrated on a chip. In
    addition, the couplers connected to the output terminal of the balanced SHM or power amplifier must provide a significant harmonic rejection. Moreover, VCO using CMOS technology has the advantages on the cost, low supply voltage and low power consumption but silicon lossy substrate and worse device noise would degrade significantly the phase noise. Therefore, how to improve further the performance of CMOS VCOs is also worth to be studied in this thesis. To overcome the issues of conventional couplers, a novel compact quadrature hybrid using the lumped elements is presented in this thesis. The proposed topology enables significant circuit size reduction further and provides a wider bandwidth in comparison with former approaches. The characteristics of the proposed topology could be analyzed by means of the transmission (ABCD) matrix method and was fabricated successfully on PCB and a Ka band balanced third-LO SHM MMIC, which could decreased the frequency of LO from Ku band to X band compared conventionally SHM topology. In addition, compact 90° and 180° hybrid couplers with harmonic suppression using lumped element band stop resonators are presented further. Experimental results reveal that two symmetrical couplers fabricated on PCB
    suppressed the second harmonic below 26 dB and 30 dB, respectively, within the 0.6 dB amplitude imbalance and 2° phase error at 2.45GHz. To improve performance of CMOS VCOs further, three novel topologies are developed in this thesis. First, a common-source PMOS single-end VCO using 90nm CMOS technology is demonstrated. The topology results negative resistance by the drain inductance and the parasitic capacitance feedback path. The fabricated 1.75GHz VCO consumes 5.54 mW with a low supply voltage of 1 V. Second, a technique of the bottom series PMOS cross-coupled current source is presented to minimize the current noise source up-converted into phase noise. A 5 GHz differential Colpitts VCO employing the technique achieves a good phase noise of -100.3 dBc/Hz @100kHz. Finally, a Colpitts VCO using the technique of gate inductive feedback is demonstrated to relax the start-up condition. The proposed topology enhances the negative conductance and improves the power consumption further. As proof of the concept, a 7.9GHz full PMOS Colpitts VCO with a power consumption of 4.9 mW was implemented.

    ABSTRACT (Chinese)……………………………………………………… I ABSTRACT (English) …………………………………………………… III ACKNOWLEDGMENT ……………………………………………… ………… V CONTENTS …………………………………………………………………… VII FIGURE CAPTIONS ………………………………………………………… XI TABLE CAPTIONS ……………………………… ………………………… XIV CHAPTER 1 Introduction 1.1 Overview………………………………………………………… 1 1.2 Motivation and Contribution………………………………… 5 1.3 Organization of the Dissertation………………………… 8 1.4 References………………………………………………………… 12 CHAPTER 2 Design and Implemented of Novel Quadrature Hybrid with Compact Lumped Elements 2.1 Introduction………………………………………………………....14 2.2 Theoretical Analysis of A Novel Compact Quadrature Hybrid............................................. .15 2.3 Implementation of the PCB 3dB Quadrature Hybrid..... 27 2.4 Implementation of the MMIC 3dB Quadrature Hybrid … .30 2.5 Summary…………………………………………………………..... .33 2.6 References…………………………………………………………....34 CHAPTER 3 Design of Compact 90° and 180° Couplers with Harmonic Suppression Using Lumped Element Band- Stop Resonators 3.1 Introduction..………………………………………………………. 36 3.2 Circuit Topology and Theoretical Analysis ……………. 38 3.3 Implementation of 3dB 90° and 180° Couplers…………… 49 3.4 Summary………….……………………..……..…….…………….. 56 3.5 References…………………………….……..……..…….… ... 57 CHAPTER 4 A Ka Band Balanced Third LO-harmonic Mixer Using a Lumped Elements Quadrature Hybrid 4.1 Introduction…………………………………...…………………… 59 4.2 Mixer Design…...………………………………………………….. 60 4.3 MMIC Performance….................................. 63 4.4 Summary…………………...…………...…………………………… 68 4.5 References………………………………….…………………….... 69 CHAPTER 5 Principles of VCO 5.1 Introduction………………………………………………………... 71 5.2 Basic Oscillation Theorem..………...…............... 72 5.3 Oscillator Topology................................. 75 5.4 Spiral Inductors and MOS Varactors………………………… 77 5.5 Phase Noise……………………………..……………........... 82 5.6 Phase Noise model………………………………………………... 86 5.7 VCO Design Parameters………….………………………....... 93 5.8 References……………………………..……………………………. 95 CHAPTER 6 Development of S-Band and C-Band CMOS Voltage Controlled Oscillators 6.1 Introduction…………………………………...…………………… 99 6.2 A 1.7 GHz, 1V VCO Implemented by 90nm CMOS…………… 99 6.2.1 Noise Issue for Deep Submicron CMOS technology.... 99 6.2.2 VCO Design……………...………………………………….... 101 6.2.3 Fabrication and Measurement..….................. 104 6.3 A 5 GHz Differential Colpitts CMOS VCO Using the Bottom PMOS Cross-Coupled Current Source............109 6.3.1 Issue of Copitts VCO Tail Current Noise...........109 6.3.2 VCO Design……………...………………………………….... 111 6.3.3 Fabrication and Measurement………………………...... 114 6.4 A 7.9 GHz Low-power Fully PMOS Colpitts VCO Using the Technique of Gate Inductive Feedback…………….......118 6.4.1Issue of Copitts VCO Start-Up..................... 118 6.4.2 VCO Design……………...…………………………………..... 119 6.4.3 Fabrication and Measurement……………………........ 124 6.5 Summary…………………...…………………………………..….… 128 6.6 References……………………………………………………...... 130 CHAPTER 7 Conclusions and Future Works 7.1 Conclusions…………………………………………………...…… 134 7.2 Future Works…...…...…………………………………………… 136 PUBLICATION LIST ………………………… …………………………… 138 VITA ….……………………………………………………………………… 140

    Chapter1:

    [1] K. Sasaki, J. Utsu, K. Matsugatani, K. Hoshino, T.
    Taguchi, and Y. Ueno “InP MMICs for V-band FMCW
    radar,” in IEEE MTT-S Int. Microw. Symp. Dig.,1997,
    pp. 937-940.
    [2] I. Bahl, and P. Bhartia, Microwave solid state circuit
    design, Wiley-Interscience,2003.
    [3] H. Z. Liu, C. H. Lin, C. K. Chu, H. K. Huang, M. P.
    Houng, C. H. Chang, C. L.Wu, C.S. Chang, and Y. H.
    Wang, “A single-supply Ku-band 1-Watt power amplifier
    MMIC with compact self-bial PHEMTs,” IEEE
    Microw. Wireless Compon. Lett., vol.16, no. 6, pp. 330-
    332, June 2006.
    [4] T. H. Lee, “The Design of CMOS Radio-Frequency
    Integrated Circuits,”Cambridge University Press, 1998.
    [5] B. Razavi, “A 2.4 GHz CMOS receiver for IEEE 802.11
    wireless LAN’s,” IEEE J. Solid-State Circuits, vol.
    34, pp. 1382-1385, Oct. 1999.
    [6] A. Springer, L. Maurer, and R. Weigel, “RF System
    Concepts for Highly Integrated RFICs for W-CDMA Mobile
    Radio Terminals,” IEEE Trans.Microwave Theory Tech.,
    vol. 50, pp. 254-267, Jan. 2001.
    [7] D. M. Pozar, Microwave and RF design of wireless
    systems, John Wiley & Sons Inc., 2000.
    [8] A. Madjar, “A novel general approach for the optimum
    design of microwave and millimeter wave subharmonic
    mixers”, IEEE Trans. Microw. Theory and Tech., vol.
    44, pp.1997-1999, Nov. 1996.
    [9] P. Blount and C. Trantanella, “A high IP3,
    subharmonically pumped mixer for LMDS applications,”
    IEEE Compound Semiconductor Integrated Circuit Symp.,
    pp 171-174, 2000.
    [10] T. Yamaji, H. Tanimoto, and H. Kokatsu, “An I/Q
    active balanced harmonic mixer with IM2 cancelers and
    a 45 degree phase shifter,” in IEEE Solid-State
    Circuits Conf. Dig. Tech. Papers, pp. 368-369, 1998.
    [11] L. Moon-Que, M. Seong-Mo, R. Keun-Kwan, J. Dong-Phil,
    and Y. In-Bok,“Subharmonically pumped image rejection
    mixer for K-band applications,” in Proc.Gallium
    Arsenide Appl. Symp. (GAAS), Oct. 11-12, 2004, pp.
    151-154
    [12] P. Blount, “An LMDS, subharmonically pumped imag
    reject mixer,” in Gallium Arsenide Integrated Circuit
    (GaAs IC) Symp., pp. 41-44, Oct. 2001.
    [13] J. C. Vaz and J. C. Freire, “Millimeter-wave
    monolithic power amplifier for mobile broadband
    systems,” IEEE Trans. Microw. Theory Tech., vol. 49,
    no. 6, pp. 1211–1215, Jun. 2001.
    [14] Y. C. Chiang and M. C. Ma,” Wide-Band Single-side
    Band Subharmonic Mixer Constructed With Re-entrant
    Couplers and Lumped-element Coupler”, IEEE Microwave
    and Wireless Component Letters, Vol. 18, No. 12, pp.
    806-808, Dec.2008.
    [15] I. Ohta, X. P. Li, T. Kawai, and Y. Kokubo, “A design
    of lumped-element 3 dB quadrature hybrids,” Asia-
    Pacific Microw. Conf. Proceedings, vol. 3, pp.
    1141-1144, Dec 1997.
    [16] H. Fudem and E. C. Niehenke, “Novel millimeter wave
    active MMIC triplers," IEEE MTT-S Int. Dig., vol.2,
    pp. 387-390, June 1998.
    [17] E. Hegazi, H .Sjoland and A .A. Abidi, “A filtering
    technique to lower LC oscillator phase noise,” IEEE
    J. Solid-State Circuits, vol. 36, no. 12, pp. 1921–
    1930, Dec. 2001.

    Chapter 2:

    [1] J. C. Chiu, J. M. Lin, M. P. Houng, and Y. H. Wang, “A PCB-compatible 3dB
    coupler using microstrip-to-CPW transitions,” IEEE Microw. Wireless Compon.
    Lett., vol.16, no.6, pp369-371, June. 2006.
    [2] Z. Liu, R. M. Weikle, “A compact quadrature coupler based on coupled artificial
    transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp.
    889-891, Dec 2005.
    [3] S. S. Liao and J. T. Peng, “Compact planar microstrip branch-line couplers using
    the quasi-lumped elements approach with nonsymmetrical and symmetrical
    T-shaped structure,” IEEE Trans. Microw. Theory Tech., vol. MTT-54, no.9, pp.
    3508-3514, Sep. 2006.
    [4] J. Yamasaki, I. Ohta, T. Kawai, and Y. Kokubo, “Design of broadband
    semi-lumped and lumped element quadrature hybrids,” IEEE MTT-S Int.
    Microwave Symp. Dig., PP. 12-17, June 2005.
    [5] I. Ohta, X. P. Li, T. Kawai, and Y. Kokubo, “A design of lumped-element 3 dB
    quadrature hybrids,” Asia-Pacific Microw. Conf. Proceedings, vol. 3, pp.
    1141-1144, Dec 1997.
    [6] H. C. Chen, and C. Y. Chang, “Modified vertically installed planar couplers for
    ultrabroadband multisection quadrature hybrid,” IEEE Microw. Wireless Compon.
    Lett., vol. 16, no. 8, pp. 446-448, Aug 2006.
    [7] Y. C. Chiang and C. Y. Chen, “Design of a wide-band lumped-element 3-dB
    quadrature coupler,” IEEE Trans. Microw. Theory Tech., vol. MTT-49, no.3, pp.
    476–479, Mar. 2001.
    [8] J. Hogerheiden, M. Ciminera, and G. Jue, “Improved planar spiral transformer
    theory applied to a miniature lumped element quadrature hybrid,” IEEE Trans.
    Microw. Theory Tech., vol.MTT-45, no.4, pp. 543-545, April. 1997.
    [9] J. Reed, and G. J. Wheeler, “A method of analysis of symmetrical four-port
    networks," IEEE Trans. Microw. Theory Tech., vol. 4, no. 4, pp. 246 – 252, Oct.
    1956.
    [10] J. Lange, “Interdigitated stripline quadrature coupler,” IEEE Trans. Microwave
    Theory Tech., vol. MTT-17, no.12, pp. 1150–1151, Dec. 1969.
    [11] A. Sawicki and K. Sachse, “A novel directional coupler for PCB and LTCC
    applications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2002, pp. 2225–2228.
    [12] H. K. Chiou, H.H. Lin, and C.Y. Chang, “Lumped-element compensated
    high/low-pass balun design for MMIC double-balanced mixer,” IEEE
    Microwave Guided Wave Lett., vol. 7, no.8, pp. 248–250, Aug. 1997.
    [13] D. P. Andrews and C. S. Aitchison, “Wide-band lumped-element quadrature
    3-dB couplers in microstrip,” IEEE Trans. Microw. Theory Tech., vol. MTT-48,
    no. 12, pp. 2424–2431, Dec. 2000.
    [14] R. W. Vogel, “Analysis and design of lumped- and lumped-distributed element
    directional couplers for MIC and MMIC applications,” IEEE Trans. Microw.
    Theory Tech., vol. MTT-40, no.2, pp. 253–262, Feb. 1992.
    [15] D. M. Pozar, Microwave Engineering, 2nd Ed. New York: Wiley, 1998.

    Chapter 3:

    [1] J. C. Vaz and J. C. Freire, “Millimeter-wave monolithic power amplifier for
    mobile broadband systems,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 6,
    pp. 1211–1215, Jun. 2001.
    [2] T. Imaoka, S. Banba, A. Minakawa, and N. Imai, “Millimeter-wave wideband
    amplifiers using multilayer MMIC technology,” IEEE Trans. Microw. Theory
    Tech., vol. 45, no. 1, pp. 95–101, Jan. 1997
    [3] Y. J. Sung, C. S. Ahn, and Y.-S. Kim, “Size reduction and harmonic suppression
    of rat-race hybrid coupler using defected ground structure,” IEEE Microw.
    Wireless Compon. Lett., vol. 14, no. 1, pp. 7–9, Jan. 2004.
    [4] J. Gu, and X. Sun, " Miniaturization and harmonic suppression rat-race coupler
    using C-SCMRC resonators with distributive equivalent circuit", IEEE Microw.
    Wireless Compon Lett, vol. 15, no. 12, pp. 880-882, Dec. 2005.
    [5] J. Gu, and X. Sun, "Miniaturization and harmonic suppression of branch-line and
    rat-race hybrid coupler using compensated spiral compact microstrip resonant
    cell,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 1211–1214.
    [6] J. T. Kuo, J-S, Wu, and V-C. Chiou, "Miniaturized rat-race coupler with
    suppression of spurious passband", IEEE Microw Wireless Compon. Lett,. vol. 17,
    no. 1, pp. 46-48, Jan. 2007.
    [7] I. Ohta, X. P. Li, T. Kawai, and Y. Kokubo, “A design of lumped-element 3 dB
    quadrature hybrids,” Asia-Pacific Microw. Conf. Proceedings, vol. 3, pp.
    1141-1144, Dec 1997.
    [8] J. A. Hou and Y. H. Wang, “A compact quadrature hybrid based on high-pass and
    low-pass lumped elements," IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8,
    pp. 595-597, Aug 2007.
    [9] Y. C. Chiang and C. Y. Chen, “Design of a wide-band lumped-element 3-dB
    quadrature coupler,” IEEE Trans. Microw. Theory Tech., vol. MTT-49, no.3, pp.
    476–479, Mar. 2001.
    [10] H. K. Chiou, H.H. Lin, and C.Y. Chang, “Lumped-element compensated
    high/low pass balun design for MMIC double-balanced mixer,” IEEE Microwave
    Guided Wave Lett., vol. 7, no.8, pp. 248–250, Aug. 1997.
    [11] P. C. Yeh, W. C. Liu, and H. K. Chiou, “Compact 28-GHz subharmonically
    pumped resistive mixer MMIC using a lumped-element high-pass/band-pass
    balun,” IEEE Microw. Wireless Compon. Lett., vol. 15, no.2, pp. 62–64, Feb.
    2005.
    [12] J. Reed, and G. J. Wheeler, “A method of analysis of symmetrical four-port
    networks," IEEE Trans. Microw. Theory Tech., vol. 4, no. 4, pp. 246 – 252, Oct.
    1956.
    [13] Y. C. Leong, K. S. Ang, and C. H. Lee, “A derivation of a class of. 3-port baluns
    from symmetrical 4-port networks,” in IEEE MTT-S Int. Microwave Symp. Dig.,
    2002, pp. 1165–1168.
    [14] K. S. Ang, Y. C. Leong, and C. H. Lee, “Analysis and design of miniaturized
    lumped distributed impedance transforming baluns,” IEEE Trans. Microw.
    Theory Tech., vol. MTT-51, no.3, pp. 1009–1017, Mar. 2003.

    Chapter 4:

    [1] Y. J. Hwang, H. Wang, and T. H. Chu, “A W-band sub-harmonically pumped
    monolithic GaAs-based HEMT gate mixer," IEEE Microw. Wireless Compon.
    Lett., vol.14, no. 7, pp. 313-315, July 2004.
    [2] J. C. Chiu, C. P. Chang, M. P. Houng and Y. H. Wang, “A 12-36GHz PHEMT
    MMIC balanced frequency tripler," IEEE Microw. Wireless Compon. Lett.,
    vol.16, no. 1, pp. 19-21, Jan 2006.
    [3] H. Fudem and E. C. Niehenke, “Novel millimeter wave active MMIC triplers,"
    IEEE MTT-S Int. Dig., vol.2, pp. 387-390, June 1998.
    [4] A. Andreas and Z. Herbert, “A reliable Ka-band sub-harmonic mixer for satellite
    converters,” IEEE CSICS Symp, vol. 11, pp. 65–68, Nov. 2006.
    [5] T.A. Bos and E. Camargo, “A balanced resistive mixer avoiding an IF balun”,
    Microwave Symposium Digest, IEEE MTT-S Int. Dig., vol. 1, pp. 245–248, June
    2002.
    [6] J. A. Hou and Y. H. Wang, “A compact quadrature hybrid based on high-pass and
    low-pass lumped elements," IEEE Microw. Wireless Compon. Lett., vol.x, no. 8,
    pp. x-x, Aug. 2007.
    [7] K. S. Ang, M. Chongcheawchamnan, D. Kpogla, P. R. Young, I. D. Robertson,
    D. Kim, M. Ju, and H. Seo, “Monolithic Ka-band even-harmonic quadrature
    resistive mixer for direct conversion receivers,” in Proc. Radio Frequency
    Integrated Circuits (RFIC) Symp, pp. 169–172, May 2001.
    [8] K. Kawakami, M. Shimozawa, H. Ikematsu, K. Itoh, K. Isota, and O. Ishida, “A
    millimeter-wave broadband monolithic even harmonic image rejection mixer,”
    IEEE MTT-S Int. Dig., vol. 3, pp.1443–1446, Jun. 1998.
    [9] K. S. Ang, A. H. Baree, S. Nam, and I. D. Robertson, “A millimeter wave
    monolithic subharmonically pumped resistive mixer,” Asia-Pacific Microw. Conf.
    Proceedings, vol. 2, pp. 222–225, Nov. 30–Dec. 3, 1999.
    [10] E. W. Lin and W. H. Ku, “Device considerations and modeling for the design of
    an InP-based MODFET millimeter-wave resistive mixer with superior
    conversion efficiency,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 8, pp.
    1951–1959, Aug. 1995.
    [11] H.I. Fujishiro, Y. Ogawa, T. Hamada, and T. Kimura, “SSB MMIC mixer with
    subharmonic LO and CPW circuits for 38 GHz band applications,” Electronic
    Lett., vol. 37, pp. 435-436, 2001.
    [12] H.R. Ahn, and B. Kim, “Transmission-line directional couplers for impedance
    transforming,” IEEE Microw. Wireless Compon. Lett., vol. 16, pp.537-539, Oct.
    2006.
    [13] R.G. Hicks and P.J. Khan, “Numerical Analysis of Subharmonic Mixers Using
    Accurate and Approximate Models”, IEEE Trans. Microw. Theory and Tech., vol.
    30, pp.2113-2120, Dec. 1982.
    [14] A. Madjar, “A novel general approach for the optimum design of microwave and
    millimeter wave subharmonic mixers”, IEEE Trans. Microw. Theory and Tech.,
    vol. 44, pp.1997-1999, Nov. 1996.
    [15] M.Cohn, James E. Degenford, Burton A. Newman, “Harmonic mixing with an
    antiparallel diode pair”, IEEE Trans. Microw. Theory and Tech., vol. 2, pp.71-76,
    May 1978.

    Chapter 5:

    [1] G. Gonzalez, Microwave Transistor Amplifiers, Prentice Hall, 1984.
    [2] D. Ham, A. Hajimiri, “Concepts and Models in Optimization of Integrated LC
    VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896-909, Jun. 2001.
    [3] X. Li, S. Shekhar, D. J. Allstot, “Gm-Boosted Common-Gate LNA and Differential
    Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no.
    12, pp. 2609-2619, Dec. 2005.
    [4] S. H. Lee, Y. H. Chuang, S. L. Jang, and C. C. Chen,”Low-Phase Noise Hartley
    Differential CMOS Voltage Controlled Oscillator,” IEEE Microw. Wireless Compon.
    Lett., vol. 17, no. 2, pp. 145–147, Feb. 2007.
    [5] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J.
    Solid-State Circuits, vol. 37, no. 12, pp. 1728–1736, Dec. 2002.
    [6] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE
    Transactions on Parts, Hybrids, and Packaging, vol. 10, no.6, pp. 101-109, June1974.
    [7] J. Craninckx and M. S. J. Steyaert, “A 1.8GHz low-phase-noise CMOS VCO using
    optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp.
    736-744, May 1997.
    [8] C. P. Yue, C. Ryu, J. Lau, T. H. Lee, and S. S. Wong. “A physical model for planar
    spiral inductors on silicon.” In proceedings IEEE IEDM’96, 1996
    [9] S. S. Mohan, M. Del, M. Hershenson, S. P. Boyd, T. H. Lee, “Simple accurate
    expressions for planar spiral inductances,” IEEE J. Solid-State Circuits, vol. 34, no. 0,
    pp. 1419-1424, Oct. 1999.
    [10] E. Hegazi, A. A. Abidi, “Varactor Characteristics, Oscillator Tuning Curves,and
    AM-FM Conversion,” IEEE J. Solid-State Circuits, vol.38, no. 6, pp. 1033-1039, Jun.
    2003.
    [11] P. Andreani, and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J.
    Solid-State Circuits, vol. 35, no. 6, pp. 905–910, June 2000.
    [12] Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [13] Behzad Razavi, Design Of Analog CMOS Integrated Circuits, Mcgraw Hill, 2001.
    [14] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE,
    vol. 54, pp. 329–330, Feb. 1966.
    [15] J. J. Rael and A. A. Abidi, “Physical Processes of Phase Noise in Differential LC
    Oscillator,” CICC, pp. 569-572, 2000.
    [16] A. Hajimiri, T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,”
    IEEE J. Solid-State Circuits, vol. 33, no. 2, Feb. 1998.
    [17] A. Hajimiri, T. H. Lee, “Design and Optimization of LC Oscaillators,” IEEE
    Computer-Aided Design, pp. 65-69, Nov. 1999.
    [18] A. Hajimiri, T. H. Lee, “Phase Noise in CMOS Differential LC Oscillators,” IEEE
    VLSI Circuits Dig. Tech. Papers, pp.48-51, Jun. 1998.
    [19] N. M. Nguyen, R.G. Meyer. “Start-up and Frequency Stability in High-Frequency
    Oscillators,” IEEE J. Solid-State Circuits, vol. 27, no. 5, pp. 810-820, May 1992.
    [20] E. Hegazi, A. A. Abidi, “Varactor Characteristics, Oscillator Tuning Curves,and
    AM-FM Conversion,” IEEE J. Solid-State Circuits, vol.38, no. 6, pp. 1033-1039, Jun.
    2003.
    [21] Behzad Razavi, “Analysis, Modeling, and Simulation of Phase Noise in Monolithic
    Voltage-Controlled Oscillators,” IEEE Custom Integrated Circuits Conference, pp.
    323-326, May 1995.
    [22] Behzad Razavi , “A Study of Phase Noise in CMOS Oscillator ,”IEEE J. of
    Solid-State Circuits ,vol. 31 ,pp. 331-343, March 1996.
    [23] X. Li, S. Shekhar, D. J. Allstot, “Low-Power gm-boosted LNA and VCO Circuits in
    0.18μm CMOS,” ISSCC Dig. Tech. Papers, pp. 534-535, 2005.
    [24] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A
    low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,”
    IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148–1154, Jul. 2003.
    [25] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using
    transformer-based LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10,
    pp. 446–448, Oct. 2003.
    [26] Nam-Jin Oh, Sang-Gug Lee, “11-GHz CMOS Differential VCO with Back-Gate
    Transformer Feedback,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp.
    733-735, Nov. 2005.
    [27] G. D. Astis, D.Cordeau, J. M. Paillot, L. Dascalescu, “A 5-GHz Fully Integrated Full
    PMOS Low-Phase-Noise LC VCO,”IEEE J. Solid-State Circuits, vol. 40, no. 10, pp.
    2087-2091, Oct. 2005.
    [28] A. Hajimiri et al., “Design Issues in CMOS Differential LC Oscillators,” IEEE J.
    Solid-State Circuits, vol. 34, pp. 717-724, May, 1999.
    [29] A. Ismail, A. Abidi, “CMOS Differnetial LC Oscillator with Suppressed
    Up-Converted Flicker Noise,” ISSCC Dig. Tech. Papers, pp. 88-99, 2003.
    [30] M. Randall, T. Hock, “General Oscillator Characterization Using Linear Open-Loop
    S-parameters,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 6, pp.
    1094-1100,Jun. 20.
    [31] S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V.
    Boccuzzi, “Frequency dependence on bias current in 5-GHz CMOS VCOs: Impact on
    tuning range and flicker noise up-conversion,” IEEE J. Solid-State Circuits, vol. 37,
    pp. 1003–1011, Aug. 2002.
    [32] C.P. Yue and S.S. Wong. “On-chip spiral inductors with patterned ground shields for
    Si-based RF ICs.” IEEE Journal of Solid-state Circuits. vol.33, no5. May 1998.

    Chapter 6:

    [1] A. Jerng; C. G. Sodini, “The impact of device type and sizing on phase noise
    mechanisms,” IEEE Journal of Solid-State Circuit, vol. 40, Issue 2, pp.
    360–369, Feb.2005.
    [2] V. H. Chan; J. E. Chung, “The impact of NMOSFET hot-carrier degradation on
    CMOS analog subcircuit performance,” IEEE Journal of Solid-State Circuit,
    vol. 30, Issue 6, pp. 644 – 649, June 1995.
    [3] N. T. Tchamov, T. Niemi, N. Mikkola, “High-performance differential VCO
    based on Armstrong oscillator topology,” IEEE Journal of Solid-State Circuits,
    Vol 36, Issue 1, pp. 139-141, Jan. 2001
    [4] G .Von Buren, F. Ellinger, L. Rodoni, H. Jackel, “Low power consuming
    BiCMOS single-ended VCO for wireless LAN at C-band,” IEEE
    Bipolar/BiCMOS Circuit and Technology, pp. 249-252, Sept. 2004
    [5] M. J. Underhill, “Reduction of phase noise in single transistors,” Eur. Freq. Time
    Forum, pp. 476–490, 1996.
    [6] A. Megej, K. Beilenhoff, and H. L. Hartnagel, “Fully monolithically integrated
    feedback voltage controlled oscillator,” IEEE Microw. Guided Wave Lett., vol. 10,
    no. 6, pp. 239–241, Jun. 2000.
    [7] X. Sun, D. Linten, O. Dupuis, G. Carchon, P. Soussan, S. Decoutere, and W. De
    Raedt, “High-Q on-chip inductors using thin-film wafer level packaging
    technology demonstrated on a 90 nm RF-CMOS 5 GHz VCO,” in Proc. Eur.
    Microw. Conf., Oct. 2005, vol. 1, pp. 1–4.
    [8] B-U. H. Klepser, M. Scholz and I. I. Kucen, "A 5.7 GHz Hiperlan SiGe BiCMOS
    voltage-controlled oscillator and phase-locked-loap frequency synthesizer",
    IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 61-64, May
    2001.
    [9] G. Gonzales,"MicrowaveTransistor Amplifiers", Rentice Hall, 2nd Edition, 1997.
    [10] P.Vaananen, M. Metsanvirta, N. T. Tchamov, “A 3.6 GHz double cross-coupled
    multivibrator VCO with 1.6-GHz tuning,” IEEE Transactions on Circuits and
    Systems II: Analog and Digital Signal Processing, Vol 48, Issue 8, pp. 799-802,
    Aug. 2001.
    [11] F. Herzel, W. Winkler, “A 2.5-GHz eight-phase VCO in SiGe BiCMOS
    technology,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol
    52, Issue 3, pp. 140-144, March 2005.
    [12] T. Rui, M. Berroth, “5 GHz voltage controlled ring oscillator using source
    capacitively coupled current amplifier,” Silicon Monolithic Integrated Circuits in
    RF Systems, pp. 45-48, April 2003.
    [13] G. Grau, U. Langmam, W. Winkler, D. Knoll, J. Osten, and K.Pressel, "A
    current folded up-conversion mixer and VCO with center-tapped inductor in a
    SiGe-HBT technology for 5GHz wireless LAN applications", IEEE Journal of
    Solid-State Circuits, Vol. 35. No. 9. pp. 1345-1352, Sept. 2000.
    [14] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,”
    IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1728–1736, Dec. 2002.
    [15] X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and
    differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State
    Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
    [16] E. Hegazi, H .Sjoland and A .A. Abidi, “A filtering technique to lower LC
    oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp.
    1921–1930, Dec. 2001.
    [17] Y. K. Chu and H. R. Chuang, “A fully integrated 5.8 GHz U-NII band 0.18-μm
    CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 7, pp. 287–289,
    Jul. 2003.
    [18] M.D. Tsai, Y.H. Cho, and H. Wang, “A 5-GHz low phase noise differential
    Colpitts CMOS VCO,” IEEE Microw.Wireless Compon. Lett., vol. 15, no. 5, pp.
    327–329, May 2005.
    [19] C. Samori, S. Levantion, and V. Boccuzzi, “A -94 dBc/Hz@100 kHz
    fully-integrated, 5-GHz, CMOS VCO with 18% tuning range for Bluetooth
    applications,” in IEEE Custom Integrated Circuits Conf. Proc., 2001, pp.
    201–204.
    [20] E. A. M. Klumperink, S. L. J. Gierkink, A. P. van derWel, and B. Nauta,
    “Reducing MOSFET 1/f noise and power consumption by switch biasing,” IEEE
    J. Solid-State Circuits, vol. 35, pp. 994–1001, July 2000.
    [21] G. De Astis, D. Cordeau, J.M. Paillot, and L. Dascalescu, “A 5-GHz fully
    integrated full PMOS low-phase-noise LC VCO,” IEEE J. Solid-State Circuits,
    vol. 40, no. 10, pp. 2087–2091, Oct. 2005.
    [22] H. Ainspan and J. O. Plouchart, “A comparison of MOS varactors in
    fully-integrated CMOS LC VCO's at 5 and 7 GHz,” in IEEE Eur. Solid-State
    Circuits Conf., 2000
    [23] S. H. Lee, Y. H. Chuang, S. L. Jang, and C. C. Chen,”Low-Phase Noise Hartley
    Differential CMOS Voltage Controlled Oscillator,” IEEE Microw. Wireless
    Compon. Lett., vol. 17, no. 2, pp. 145–147, Feb. 2007.
    [24] Y. Eo, K. Kim, and B. Oh, “Low noise 5 GHz differential VCO using
    InGaP/GaAs HBT technology,” IEEE Microw. Wireless Compon. Lett., vol. 13,
    no. 7, pp. 259–261, Jul. 2003.
    [25] J. A. Hou, and Y. H. Wang, “A 5 GHz differential Colpitts CMOS VCO using
    the bottom PMOS cross-coupled current source,” IEEE Microw.Wireless
    Compon. Lett., vol. 19, no. 6, pp.401-403, June. 2009.
    [26] G. De Astis, D. Cordeau, J.M. Paillot, and L. Dascalescu, “A 5-GHz fully
    integrated full PMOS low-phase-noise LC VCO,” IEEE J. Solid-State Circuits,
    vol. 40, no. 10, pp. 2087–2091, Oct. 2005.
    [27] C. Y. Wu and S. Y. Hsiao, “The design of a 3 V 900 MHz CMOS bandpass
    amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 2, pp. 159–168, Feb. 1997.
    [28] P. Andreani, and S. Mattisson, “On the use of MOS varactors in RF VCOs,”
    IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905–910, June 2000.
    [29] T. Ussmuller, K. Seemann and R. Weigel, “gm-Boosted VCO with Low Power
    Consumption and Large Tuning Range,” in Wireless Technologies European
    Conf., no.10, pp. 288–291, Oct. 2007.
    [30] N.-J. Oh; and S.-G. Lee, “Current reused LC VCOs,” IEEE Microw.Wireless
    Compon. Lett., vol. 15, no. 11, pp. 736–738, Nov. 2005.
    [31] P. Upadhyaya, M. Rajashekharaiah, D. Heo, D. M. Rector, and Y. E. Chen, “Low
    power and low phase noise 5.7 GHz LC VCO in OOK transmitter for
    neurosensory application,” in IEEE MTT-S Int. Micro. Symp. Dig., vol. 1, June.
    2005, pp.1539–1542.
    [32] J. Bhattacharjee, D. Mukherjee, E. Gebara, S. Nuttinck, and J. Laskar, “A 5.8
    GHz fully integrated low power low phase noise CMOS LCVCO for WLAN
    applications,” in IEEE MTT-S Int. Micro. Symp. Dig., vol. 1, June. 2002,
    pp.585–588.
    [33] T. K. K. Tsang and M. N. El-Gamal, “A high figure of merit and area efficient
    low-voltage (0.7–1 V) 12 GHz CMOS VCO,” in Proc. IEEE RFIC Symp., 2003,
    pp. 89–92.
    [34] B. Park, S. Lee, S. Choi, and S. Hong, “A 12-GHz fully integrated cascode
    CMOS LC VCO with Q-enhancement circuit,” IEEE Microw.Wireless Compon.
    Lett., vol. 18, no. 2, pp. 133–135, Feb. 2008.

    下載圖示 校內:2012-08-30公開
    校外:2012-08-30公開
    QR CODE