簡易檢索 / 詳目顯示

研究生: 鄭佩玲
Cheng, Pei-Ling
論文名稱: 蝴蝶蘭花色相關UDP轉醣酶之生化特性研究
Biochemical characterization of flower color related UDP-glycosyltransferases from Phalaenopsis orchids
指導教授: 陳虹樺
Chen, Hong-Hwa
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 61
中文關鍵詞: 蝴蝶蘭花色轉醣酶花青素
外文關鍵詞: flower color, anthocyanin, UFGT, glucosyltransferase, Phalaenopsis
相關次數: 點閱:127下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蝴蝶蘭(Phalaenopsis)在市場上是其中一種最受歡迎的蘭花之一,對商業生產而言,其多變的花色是重要的性狀。從姬蝴蝶蘭 (Phalaenopsis equestris) 花苞的EST (expressed sequence tag) 資料庫中,得到三個可能參與花青素生合成路徑的 UFGT (UDP-glucose:flavonoid glucosyltransferase) 基因,分別命名為PeUFGT1、 PeUFGT2 和PeUFGT3。其中,只有 PeUFGT3 在紅色品種中有差異性表現但是在白色品種中沒有。UFGT負責催化醣基從UDP-glucose到黃酮上的轉移,此種醣基化可以增加黃酮類在液泡中之可溶性及穩定性。親源演化分析顯示PeUFGT3與順式玉米素(cis-zeatin) O-轉醣酶相關。利用大腸桿菌外源表現重組PeUFGT3蛋白驗證PeUFGT3的功能,並以高效液相層析法(high-performance liquid chromatography)與液相層析質譜法(liquid chromatography–mass spectrometry )分析反應產物,顯示PeUFGT3可以接受cis-zeatin,但卻不能接受kaempferol當作受質。為了探討這三個PeUFGT蛋白在生物體中的功能,通過藉由CymMV進行病毒誘導的基因沉默(virus-induced gene silencing)比較PeUFGT靜默後植株的花色改變情形。在PeUFGT1-與PeUFGT2-靜默的植株中花朵顏色比控制組要深。反之,在PeUFGT3靜默植株中花朵顏色卻變淡。花青素含量在PeUFGT3靜默植株比控制組減少50%,而在PeUFGT1-與PeUFGT2-靜默的植株增加30%含量。PeUFGT3基因表現量在PeUFGT1-與PeUFGT2-靜默植株中mRNA的含量與控制組相比分別多了兩倍與一倍。這些結果顯示PeUFGT3在蘭花中的紅色形成中扮演著關鍵性的角色。
    為了進一步尋找蝴蝶蘭花青素3-O轉醣酶,我們以目前已發表且經功能確認植物花青素3-O轉醣酶的序列搜尋姬蝴蝶蘭的部分基因體序列。PeUFGT4,是一個花青素3-O轉醣酶,並藉由3'端與5'端的cDNA末端選殖技術得到其全長序列。經多序列比對和親緣演化分析顯示PeUFGT4乃歸類在花青素3-O轉醣酶中,並且具有 plant secondary product glycosyltransferase 共同保留區域。然而,PeUFGT4在白色與紅色蝴蝶蘭品種中並無差異性表現,顯然PeUFGT4並非蘭花花色成色之關鍵酵素,雖然它真正的酵素功能仍有待進一步確認。

    Phalaenopsis is one of the most popular orchids in markets, and the various flower colors are important traits for commercial production. Three UFGT (UDP-glucose:flavonoid glucosyltransferase) genes involved in anthocyanin biosynthesis pathway have been identified from floral bud EST database of Phalaenopsis equestris, and named as PeUFGT1, PeUFGT2 and PeUFGT3. Among them, only PeUFGT3 differentially expressed in red but not in white cultivars. UFGT was responsible for catalyzing the transfer of glucosyl moiety from UDP-glucose to flavonoid, which increases the stability and solubility of flavonoid. Phylogenetic analysis results reveal that PeUFGT3 is related to cis-zeatin O-glucosyltransferase. To identify the function of PeUFGT3, heterologous expression of recombinant PeUFGT3 in Eschericia coli was performed. High-performance liquid chromatography and liquid chromatography–mass spectrometry analyses of PeUFGT3-catalyzed products indicated that PeUFGT3 could use cis-zeatin rather than kaempferol as a substrate.
    To investigate the function of these three PeUFGT proteins in vivo, CymMV-based virus-induced gene silencing was adopted for comparing the flower color change in the PeUFGTs-silenced plants. The flower color became darker than the mock in both PeUFGT1-silenced and PeUFGT2-silenced plants. In contrast, the red flower color became bleached in the plants knockdown expression of PeUFGT3. The anthocyanin content of PeUFGT3-silenced plants was 50% lower than that of mock, while that was 30% increase in both PeUFGT1-silenced and PeUFGT2-silenced plants. The mRNA abundance of PeUFGT3 in PeUFGT1-silenced and PeUFGT2-silenced plants was 2-fold and 1-fold higher than that in mock, respectively. Together, these results suggest that PeUFGT3 plays a crucial role in red color formation of orchid flowers.
    We then searched against the P. equestris partial genomic sequence with the published and function characterized anthocyanin 3-O glucosyltransferase from various plants. PeUFGT4, an anthocyanin 3-O glucosyltransferase was identified, and its full length sequence was obtained by using 3’- and 5’- rapid amplification of cDNA ends. Multiple alignment and phylogenetic analysis indicated that the PeUFGT4 is clustered into anthocyanin 3-O-glucosyltransferase with the conserved plant secondary product glycosyltransferase motif. However, there was no differential expression of PeUFGT4 between white and red cultivars in Phalaenopsis, suggesting that it is not a crucial enzyme for red color formation in orchid flowers, although its enzymatic activity remained to be confirmed.

    中文摘要 III Abstract V 致謝 VII List of Table X List of Figures X List of Appendix Figures XII 1. Introduction 1 1.1 Economic importance of Phalaenopsis 1 1.2 Significance of flower color in higher plants 1 1.2.1 Main pigment components of flower color 1 1.2.2 Anthocyanin 2 1.3 Biological roles of anthocyanin 2 1.3.1 The biosynthesis pathway of anthocyanin 2 1.3.2 The modification of flavonoids 3 1.4 The glucosyltransferases of anthocyanin 3 1.4.1 The importance of plant UGTs in the anthocyanin biosynthesis pathway 3 1.4.2 PeUFGTs isolated from P. equestris 4 1.5 Glycosyltransferases and cytokinin 5 1.6 Genetic engineering of flower color 6 2. Purpose 8 3. Materials and methods 9 3.1 Plant materials and chemicals 9 3.2 RNA extraction and reverse transcription-PCR (RT-PCR) 9 3.3 Molecular cloning of recombinant PeUFGTs protein 10 3.4 Heterologous expression of PeUFGTs 11 3.5 Purification of his-tagged and GST-fusion proteins 11 3.6 Enzyme activity assay 12 3.7 High-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC-MS) 12 3.8 Virus-induced gene silencing 13 3.9 Determination of total anthocyanin content 14 3.10 Quantitative real-time PCR 14 3.11 Protoplast isolation 15 3.12 PEG-mediated transfection of protoplasts 16 3.13 5’-RACE and 3’-RACE 16 3.14 Sequence alignments and phylogenetic analysis 17 4. Results 18 4.1 The phylogenetic analysis of PeUFGT1, PeUFGT2 and PeUFGT3 18 4.2 Heterologous expression of the recombinant PeUFGT3 protein in E. coli 18 4.3 Enzyme activity and substrate specificity assays of recombinant PeUFGT3 19 4.4 Loss-of-function assay by using virus-induced gene-silencing of PeUFGT1 and PeUFGT2 20 4.5 Effects of gene silencing of PeUFGTs in Phalaenopsis flower color formation 21 4.6 Transient expression of PeUFGT3 in Phalaenopsis flowers 22 4.7 Anthocyanin UFGT candidates investigation from OrchidBase 23 4.8 Spatial expression patterns of PeUFGT genes 23 5. Discussion 25 5.1 PeUFGT3 is a glycosyltransferase which can use cis-zeatin as the substrate 25 5.2 Alter PeUFGT3 gene expression on flowers in Phalaenopsis 27 5.3 PeUFGT4, a candidate gene responsible for glycosylation of UDP-glucose to anthocyanin 3-O-position 29 References 30 List of Table Table 1. The primers used in this study 36 List of Figures Figure 1. Spatial expression patterns of PeUFGT1, PeUFGT2 PeUFGT1, and PeUFGT4 by RT-PCR 37 Figure 2. The expression vectors used for the construction with PeUFGTs coding sequence 38 Figure 3. Expression of recombinant PeUFGT1 and PeUFGT3 proteins 39 Figure 4. Enzyme activity of purified recombinant PeUFGT1 protein 40 Figure 5. Enzyme activity of purified recombinant PeUFGT3 protein 41 Figure 6. HPLC of PeUFGT3 and cis-zeatin reaction products 42 Figure 7. HPLC of PeUFGT3 and kaempferol reaction products 43 Figure 8. Mass spectra of standard of cis-zeatin and reaction products 44 Figure 9. PeUFGT1, PeUFGT2 and PeUFGT3 silencing fragments for VIGS 45 Figure 10. Flower morphology of normal plant, PeUFGT1-, PeUFGT2- and PeUFGT3-silenced plants 46 Figure 11. Total anthocyanin contents detected in flowers of mock plant, PeUFGT1-, PeUFGT2- and PeUFGT3-silenced plants 47 Figure 12. The PeUFGTs gene expression patterns of mock and PeUFGT1-, PeUFGT2- and PeUFGT3-silenced plants by RT-PCR 48 Figure 13. The relative PeUFGTs mRNA abundance of mock and PeUFGT1-, PeUFGT2- and PeUFGT3- silenced plants 49 Figure 14. Transient expression of PeUFGT3 in Doritaenopsis “OX1313” protoplasts treated with PEG-mediated transfection 50 Figure 15. GUS staining of PeUFGT3 transgenic P. aphrodite flowers after particle bombardment 51 Figure 16. Multiple alignment of deduced amino acid sequences of four three PeUFGTs and PeUFGT4 52 Figure 17. Neighbor-joining phylogenetic tree of deduced amino acid sequences of three PeUFGTs, PeUFGT4 and glucosyltransferases from other plants 53 Figure 18. Phylogenetic tree of PeUFGT1, PeUFGT2 and PeUFGT3 57 List of Appendix Figures Appendix 1. The anthocyanin biosynthesis pathway of the most abundant anthocyanin pigments 58 Appendix 2. Expression pattern of anthocyanin biosynthetic genes 59 Appendix 3. The major anthocyanin and flavone derivatives synthetic pathway in Phalaenopsis 60 Appendix 4. The expression patterns of PeUFGT4 in different color cultivars of Phalaenopsis by using RT-PCR 61

    Bohm BA (1998) Introduction to Flavonoids. Harwood Academic Publisher, Amsterdam.
    Boss PK, Davies C, Robinson SP (1996) Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol Biol 32: 565-569
    Brzobohaty B, Moore I, Palme K (1994) Cytokinin metabolism: implications for regulation of plant growth and development. Plant Mol Biol 26: 1483-1497
    Chen DQ, Li ZY, Pan RC, Wang XJ (2006) Anthocyanin accumulation mediated by blue light and cytokinin in Arabidopsis seedlings. Journal of Integrative Plant Biology 48: 420-425
    Chen WH, Hsu CY, Cheng HY, Chang H, Chen HH, Ger MJ (2011) Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis. Plant Cell Rep 30: 1007-1017
    Cheng H-Y (2005) Clong and characterization of a flower color related gene (UDP-glucose: flavonoid 3-O- glucosyltransferase) in Phalaenopsis. National University of Kaohsiung
    Darwin C (1877) The various contrivances by which orchids are fertilised by insects. John Murray, London.
    Deikman J, Hammer PE (1995) Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol 108: 47-57
    Dixon SC, Martin RC, Mok MC, Shaw G, Mok DW (1989) Zeatin glycosylation enzymes in Phaseolus: Isolation of O-glucosyltransferase from P. lunatus and Comparison to O-xylosyltransferase from P. vulgaris. Plant Physiol 90: 1316-1321
    Dressler RL (1981) Orchids; Botany; Classification In The orchids: Natural history and classification. Harvard University Press (Cambridge, Mass).
    Frearson EM, Power JB, Cocking EC (1973) The isolation, culture and regeneration of Petunia leaf protoplasts. Dev Biol 33: 130-137
    Fu CH, Chen YW, Hsiao YY, Pan ZJ, Liu ZJ, Huang YM, Tsai WC, Chen HH (2011) OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol 52: 238-243
    Fukusaki E, Kawasaki K, Kajiyama S, An CI, Suzuki K, Tanaka Y, Kobayashi A (2004) Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J Biotechnol 111: 229-240
    Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57: 761-780
    Hall D, Yuan XX, Murata J, De Luca V (2012) Molecular cloning and biochemical characterization of the UDP-glucose:flavonoid 3-O-glucosyltransferase from Concord grape (Vitis labrusca). Phytochemistry 74: 90-99
    Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55: 481-504
    Hou B, Lim EK, Higgins GS, Bowles DJ (2004) N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279: 47822-47832
    Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213: 164-174
    Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48: 1589-1600
    Klein AO, Hagen CW (1961) Anthocyanin production in detached petals of Impatiens balsamina L. Plant Physiol 36: 1-9
    MacLeod JK, Summons RE, Letham DS (1976) Mass spectrometry of cytokinin metabolites. Per (trimethylsilyl) and permethyl derivatives of glucosides of zeatin and 6-benzylaminopurine. J Org Chem 41: 3959-3967
    Martin RC, Mok MC, Habben JE, Mok DW (2001) A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc Natl Acad Sci. USA .98: 5922-5926
    Martin RC, Mok MC, Mok DW (1999) Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc Natl Acad Sci. USA. 96: 284-289
    Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 677-678
    Morita Y, Hoshino A, Kikuchi Y, Okuhara H, Ono E, Tanaka Y, Fukui Y, Saito N, Nitasaka E, Noguchi H, Iida S (2005) Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose:anthocyanidin 3-O-glucoside-2'-O-glucosyltransferase, due to 4-bp insertions in the gene. Plant J 42: 353-363
    Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S, Nishihara M (2007) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep 26: 1951-1959
    Nakatsuka T, Mishiba K, Kubota A, Abe Y, Yamamura S, Nakamura N, Tanaka Y, Nishihara M (2010) Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian. J Plant Physiol 167: 231-237
    Nishihara M, Nakatsuka T (2011) Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnol Lett 33: 433-441
    Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis BG, Tarling CA, Ford CM, Bowles DJ, Davies GJ (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25: 1396-1405
    Osmani SA, Bak S, Imberty A, Olsen CE, Moller BL (2008) Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Plant Physiol 148: 1295-1308
    Osmani SA, Hansen EH, Malien-Aubert C, Olsen CE, Bak S, Moller BL (2009) Effect of glucuronosylation on anthocyanin color stability. J Agric Food Chem 57: 3149-3155
    Pineda Rodo A, Brugiere N, Vankova R, Malbeck J, Olson JM, Haines SC, Martin RC, Habben JE, Mok DW, Mok MC (2008) Over-expression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation. Journal of Experimental Botany 59: 2673-2686
    Poulton JE (1990) Cyanogenesis in plants. Plant Physiol 94: 401-405
    Ross J, Li Y, Lim E, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biol 2: REVIEWS3004
    Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57: 431-449
    Schwinn KE, Davies KM, Deroles SC, Markham KR, Miller RM, Bradley JM, Manson DG, Given NK (1997) Expression of an Antirrhinum majus UDP-glucose: flavonoid-3-O-glucosyltransfe transgene alters flavonoid glycosylation acid acylation in lisianthus (Eustoma grandiflorum Grise). Plant Science 125: 53-61
    Shulman Y, Lavee S (1973) Effect of cytokinins and auxins on anthocyanin accumulation in green Manzanillo olives. Journal of Experimental Botany 24: 655-661
    Su C-F (2002) Identification of flower color related genes of Phalaenopsis equestris. National Cheng Kung University, Tainan,Taiwan
    Sui X, Gao X, Ao M, Wang Q, Yang D, Wang M, Fu Y, Wang L (2011) cDNA cloning and characterization of UDP-glucose:anthocyanidin 3-O-glucosyltransferase in Freesia hybrida. Plant Cell Rep 30: 1209-1218
    Sullivan J (1998) Anthocyanin. Carnivorous Plant Newsletter (CPN) 27:86-88
    Sweet HR (1980) The genus Phalaenopsis. Day Printing Corporation, California, Pomona.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-1599
    Tanaka Y, Brugliera F, Chandler S (2009) Recent progress of flower colour modification by biotechnology. Int J Mol Sci 10: 5350-5369
    Tanaka Y, Brugliera F, Kalc G, Senior M, Dyson B, Nakamura N, Katsumoto Y, Chandler S (2010) Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives. Biosci Biotechnol Biochem 74: 1760-1769
    Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54: 733-749
    Tanaka Y, Yonekura K, Fukuchi-Mizutani M, Fukui Y, Fujiwara H, Ashikari T, Kusumi T (1996) Molecular and biochemical characterization of three anthocyanin synthetic enzymes from Gentiana triflora. Plant Cell Physiol 37: 711-716
    Veach YK, Martin RC, Mok DW, Malbeck J, Vankova R, Mok MC (2003) O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol 131: 1374-1380
    Wang J, Ma XM, Kojima M, Sakakibara H, Hou BK (2011) N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol 52: 2200-2213
    Wu C-F (2009) Identification and functional analysis of UDP-glucosyltransferase for pigments biosynthesis in Phalaenopsis orchids. National Cheng Kung University, Tainan,Taiwan
    Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565-1572
    Yoshida K, Mori M, Kondo T (2009) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26: 884-915

    下載圖示 校內:2017-08-31公開
    校外:2017-08-31公開
    QR CODE