簡易檢索 / 詳目顯示

研究生: 何欣宜
Ho, Hsin-I
論文名稱: 二階段燒結法製備微晶粒(Ba,Ca)(Ti,Zr)O3系統的顯微結構與介電性質
Microstructure and dielectric properties of (Ba,Ca)(Ti,Zr)O3 system prepared by two-step sintering
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: 鈦酸鋇晶粒大小介電常數溫度-電容曲線
外文關鍵詞: barium titanate, grain size, temperature coefficient of capacitance curve
相關次數: 點閱:135下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選擇添加微量鈣離子和鋯離子於鈦酸鋇中,製備出單一相 (Ba0.95Ca0.05)(Ti0.97Zr0.03)O3 粉末 (BCTZ),再額外加入碳酸鋇,使鈣離子取代至Ti-site,合成出單一相 (Ba, Ca)(Ti, Zr, Ca)O3 粉末 (BCTZC)。再以二階段燒結法控制晶界擴散和遷移,抑制晶粒成長現象,製備出微晶粒之陶瓷體。觀察添加微量鈣離子和鋯離子以及不同額外碳酸鋇添加量下,對於鈦酸鋇晶體結構、顯微結構和介電性質之影響。

    由實驗結果顯示,可依序在煅燒條件為 1000oC - 4 h 和 1100oC - 4 h 下,合成出BCTZ 和 BCTZC 粉末。由XRD 和 Raman 分析可判斷粉末為正方晶相之結晶結構,隨著碳酸鋇添加量增加,發現c軸縮短,a軸伸長,正方性下降,晶格體積增加,以及自發極化量降低。

    以二階段燒結法在不同燒結條件下試驗,可在 1250oC - 1 min - 1200oC - 8 h 和 1300oC - 1 min - 1200oC - 8 h 條件下獲得 BCTZ 和 BCTZC 陶瓷體,其晶粒大小可控制小於 0.5 μm 內,且相對密度達95 % 以上。其中 4Ba 系統,可於較低溫度以及較短持溫時間獲得完全緻密之陶瓷體。隨著額外添加碳酸鋇和晶粒大小之改變,於顯微結構上觀察到抑制晶粒成長的現象,於介電特性上發現,Tc 往室溫移動,To-t 朝高溫偏移;由於晶體內殘留之內應力影響,使 Tc 之介電常數被抑制,由於相轉換溫度移動以及晶粒減小導致,使得室溫之介電常數提升;整體而言,微晶粒陶瓷體其溫度-電容變化曲線有明顯寬化及平坦化的趨勢產生,歸因於晶體內殘留之高內應力以及正方性之降低,造成部分晶體相轉換為擬立方相,因而發生抑制自發極化之現象。

    In this study crystal structure , microstructure and dielectric properties of (Ba0.95Ca0.05) (Ti0.97Zr0.03)O3 were investigate. Extra 4 mol % and 6 mol % BaCO3 were added into BCTZ powders to change the phase transition temperature via push Ca2+ from Ba-site to Ti-site. As the results, single phase BCTZ powder could be obtained when calcined at 1000oC for 4 h. BCTZ powder with extra BaCO3 could be obtained after calcined at 1100oC for 4 h. The crystal structures of both are tetragonal phase confirmed by XRD and Raman spectrums. Moreover, the experimental results showed a - axis increased, c - axis decreased and tetragonality decreased. It also enlarged the volume of unit cell and reduced the spontaneous polarization.

    To use two-step sintering method to control grain boundary diffusion and migration to prepare submicro-grain ceramic. BCTZ and 4Ba sintered bulk were successfully fabricated at 1250oC - 1200oC - 8h and 6Ba sintered bulk were successfully fabricated at 1300oC - 1200oC - 8h. The bulk density were more than 95% of the theoretical density and the grain size was controlled less than 0.5 μm.

    As the extra BaCO3 content increased, the Tc moved to room temperatures nonlinearly, To-t shift toward high temperature and the Curie peak was suppressed. Due to ionic substitution and submicro-grain ceramic, it can lead to a high internal stress in the microstructure and reduce the tetragonality and spontaneous polarization. It may suppose that formation of a pseudo-cubic perovskite in the BCTZ, 4Ba and 6Ba unit cell, therefore, broadening and flattening the Temperature Coefficient of Capacitance curve.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究目的 1 第二章 理論基礎與相關文獻回顧 3 2-1 鈦酸鋇晶體結構及性質 3 2-2 鈦酸鋇陶瓷體之介電性質的影響因素 6 2-2-1內應力對介電-溫度曲線之影響 6 2-2-2正方性對介電-溫度曲線之影響 7 2-2-3添加物對介電-溫度曲線之影響 9 2-2-4 密度對介電-溫度曲線之影響 14 2-2-5 晶粒大小對介電-溫度曲線之影響 14 2-3 額外添加BaCO3於(Ba,Ca)(Ti,Zr)O3系統之反應機制 17 2-4 燒結理論 20 2-4-1 燒結基本理論 20 2-4-2 二階段燒結法 23 2-5 拉曼光譜於鈦酸鋇之應用 25 第三章 實驗方法與實驗流程 29 3-1 起始原料 29 3-2 實驗方法與實驗流程 29 3-2-1 粉末製備 29 3-2-2 粉末之熱差/熱重分析 31 3-2-3 陶瓷體製備和燒結收縮量測 31 3-2-4 燒結條件測試 33 3-3 材料分析 33 3-3-1粉末之定量分析 33 3-3-2 X 光粉末繞射分析 34 3-3-3 晶格常數分析 34 3-3-4 拉曼光譜分析 36 3-3-5晶體結構分析 36 3-3-6 掃描式電子顯微鏡 40 3-3-7 陶瓷體之密度量測 40 3-3-8 陶瓷體晶粒大小之計算及其分布 41 3-4 性質分析 41 3-4-1 陶瓷體樣品準備與介電常數量測 41 3-4-2 溫度-電容曲線量測 42 第四章 結果與討論 43 4-1 粉末成份之定量分析 43 4-2 起始粉之熱差 / 熱重分析 43 4-3 粉末之材料分析 46 4-3-1 結晶相分析 46 4-3-2 微結構分析 48 4-3-3 拉曼光譜分析 51 4-3-4 晶格常數和理論密度計算 54 4-3-5 Rietveld method 晶體結構分析 57 4-4 陶瓷體分析 60 4-4-1 燒結收縮量測 60 4-4-2 二階段燒結之參數設計 63 4-4-3 二階段燒結之微結構與密度變化 66 4-5 kinetic window 之設定 75 4-6 陶瓷體之介電常數及溫度-電容曲線分析 79 4-6-1 陶瓷體之室溫介電常數 80 4-6-2 陶瓷體之溫度-電容曲線分析 80 第五章 結論 86 參考文獻 88 附錄A 93 附錄B 95 附錄C 99

    [1] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd edition, John Wiley & Sons, New York, Chapter 18.1 (1979).
    [2] P. Hofmann, Solid State Physics: An Introduction, John Wiley & Sons, New York, (2008).
    [3] B. Tang, S. R. Zhang, Y. Yuan, X. H Zhou, and Y. S Llang, “Influence of CaZrO3 on dielectric properties and microstructures of BaTiO3-based X8R ceramics,” Sci. China Ser. E-Tech. Sci., 51 [9] 1451-1456 (2008).
    [4] H. S. Young, and H. H. Young, “Effects of Rare-Earth Oxides on Temperature Stability of Acceptor-Doped BaTiO3.” Jpn. J. Appl. Phys, 44 [8] 6143–6147 (2005).
    [5] W. R. Buessem, L. E. Cross, and A. K. Goswami, “Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate.” J. Am. Ceram. Soc., 49 [1] 33-36 (1966).
    [6] K. Kobayashi, J. Nishikawa, T. Suzuki, and Y. Mizuno, “Microstructure Study of BaTiO3–Ho2O3–MgO–SiO2-Based Ceramics Using Convergent Beam Electron Diffraction Analysis” Jap. J. Appl. Phys., 48 [9] 09KC05-09KC05-4 (2009).
    [7] J. Nishikawa, T. Hagiwara, K. Kobayashi, Y. Mizuno, and H. Kishi, “Effects of Microstructure on the Curie Temperature in BaTiO3–Ho2O3–MgO–SiO2 System,” Jap. J. Appl. Phys., 46 [10B] 6999-7004 (2007).
    [8] Q. Feng, and C. J. McConville, “Weak-Beam Dark-Field Microscopy of Complex Stress States in X7R-Type BaTiO3 Dielectric Core–Shell Structures,” J. Am. Ceram. Soc., 87 [10] 1945-1951 (2004).
    [9] G. Arlt, D. Hennings, and G. de With, “Dielectric properties of fine‐grained barium titanate ceramics,” J. Appl. Phys., 58 [4] 1619-1625 (1985).
    [10] M. H. Frey, and D. A. Payne, “Grain-size effect on structure and phase transformations for barium titanate,” Ame. Phys. Soc., 54 [5] 3158-3168 (1996).
    [11] D. Hennings and A. Schnell, “Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics, ” J. Am. Ceram. Soc., 65 [11] 539-544 (1982).
    [12] T. R. Armstrong, L. E. Morgens, A. K. Maurice, a n d R. C. Buchanan, “Effects of Zirconia on Microstructure and Dielectric Properties of Barium Titanate Ceramics,” J. Am. Cerum. Soc., 72 [4] 605-11 (1989).
    [13] R. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W Hackenberger, and S. E. Park, “New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O3–PbTiO3 Ceramics,” Jpn. J. Appl. Phys., 40 [10] 5999-6002 (2001).
    [14] S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, and Q.X. Liu, “Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba(ZrxTi1−x)O3 (0 ≤ x ≤ 0.12) ceramics,” Scripta Materialia, 61 [1] 68–71 (2009).
    [15] 謝宗諭,額外添加Ba2+ 於 (Ba,Ca)(Ti,Zr)O3 系統的顯微結構、晶體結構及介電性質,國立成功大學資源工程研究所碩士論文,民國九十九年。
    [16] M. S. Yoon, and S. C. Ur, “Effects of A-site Ca and B-site Zr substitution on dielectric properties and microstructure in tin-doped BaTiO3–CaTiO3 composites,” Ceram. Int., 34 [8] 1941-1948 (2008).
    [17] B. Jaffe, W. R. Cook Jr., and H. Jaffe, Piezoelectric Ceramics, Academic, Press, London (1971).
    [18] P. S. Dobal, A. Dixit, and R. S. Katiyar, “Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3-BaZrO3 system,” J. Appl. Phys., 89 [12] 8085-8091 (2001).
    [19] L. Zhang, O. P. Thakur, A. Feteira, G. M. Keith, A. G. Mould, D. C. Sinclair, and A. R. West, “Comment on the use of calcium as a dopant in X8R BaTiO3-based ceramics,” Appl. Phys. Lett., 90 [14] 142914 (2007).
    [20] T. T. Fang, and J. T. Shuei, “Experimental assessment of the inhibition of reduction of Ca2+ - doped barium titanate in a reducing atmosphere,” J. Mater. Res., 14 [5] 1910-1915 (1999).
    [21] T. T. Fang, H. L. Hsieh, and F. S. Shiau, “Effects of Pore Morphology and Grain Size on the Dielectric Properties and Tetragonal-Cubic Phase Transition of High-Purity Barium Titanate” J. Am. Ceram. Soc., 76 [5] 1205–1211 (1993)
    [22] W. Kwestroo, and H. A. M. Paring, “The Systems BaO-SrO-TiO2, BaO-CaO-TiO2, and SrO-CaO-TiO2,” J. Am. Ceram. Soc., 42 [6] 292–299 (1959).
    [23] H. M. Chan, M. P. Harmer, M. Lal, and D. M. Smyth, “Calcium site occupancy in BaTiO3,” Mater. Res. Soc. Symp. Proc., 31, 345-350 (1984).
    [24] D. F. K. Hennings and H. Schreinemacher, “Ca-acceptors in dielectric ceramics sintered in reducive atmospheres,” J. Eur. Ceram. Soc., 15 [8] 795-800 (1995).
    [25] S. W. Zhang, H. Zhang, B. P. Zhang, and G. Zhao, “Dielectric and piezoelectric properties of (Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 ceramics sintered in a protective atmosphere,” J. Eur. Ceram. Soc., 29 [15] 3235–3242 (2009).
    [26] R.M. German, “Sintering theory and practice,” John Wiley and Sons, New York, (1996).
    [27] 汪建民等著,陶瓷技術手冊(上),中華民國產業科技發展協進會,台灣台北,1994。
    [28] I. W. Chen, and X. H. Wang, “Sintering dense nanocrystalline ceramics without final-stage grain growth,” NATURE, 404 168-171 (2000).
    [29] X. H. Wang, X. Y. Deng, H. L. Bai, H. Zhou, W. G. Qu, and L. T. Li, “Two-Step Sintering of Ceramics with Constant Grain-Size, II : BaTiO3 and Ni–Cu–Zn Ferrite,” J. Am. Ceram. Soc., 89 [2] 438–443 (2006).
    [30] T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, “Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder,” Jap. J. Appl. Phys., 46 [4] L97–L98 (2007).
    [31] F. J. T. Lin, and L. C. D. Jonghe, “Microstructure Refinement of Sintered Alumina by a Two-Step Sintering Technique,” J. Am. Ceram. Soc., 80 [9] 2269–2277 (1997)
    [32] 王志仁,微晶粒氧化鋁陶瓷體之製備與機械性質,國立成功大學資源工程研究所博士論文,民國九十七年。
    [33] Y. I. Lee, and Y. W. Kim, “Effect of processing on densification of nanostructured SiC ceramics fabricated by two-step sintering,” J. Mater. Sci., 39 [11] 3801 – 3803 (2004).
    [34] 汪建民,材料分析,中國材料科學學會,台灣台北,2002。
    [35] P. S. Dobal, A. Dixit, and R. S. Katiyar, “Effect of lanthanum substitution on the Raman spectra of barium titanate thin films,” J. Raman Spectrosc, 38 [2] 142–146 (2007).
    [36] J. D. Freire and R. S. Katiyar, “Lattice dynamics of crystals with tetragonal BaTiO3 Structure,” Phys. Rev. B, 37 [4] 2074-2085 (1988).
    [37] T. Hoshina, H. Kakemoto, Takaaki, S. Wada, and M. Yashima, “Size and temperature induced phase transition behaviors of barium titanate nanoparticles,” J. Appl. Phys., 99 [5] 054311 (2006)
    [38] M. C. Chang, and S. C. Yu, “Raman study for (Ba1−xCax)TiO3 and Ba(Ti1−yCay)O3 crystalline ceramics,” J. Mater. Sci. Letters, 19 [15] 1323-1325 (2000).
    [39] L. Wu, M. C. Chure, K. K. Wu, W. C. Chang, M. J. Yang, W. K. Liu, and M. J. Wu, “Dielectric properties of barium titanate ceramics with different materials powder size,” Ceram. Intern., 35 [3] 957–960 (2009).
    [40] S. W. Kwon, and D. H. Yoon, “Tetragonality of nano-sized barium titanate powder prepared with growth inhibitors upon heat treatment, “J. Eur. Ceram. Soc., 27 [1] 247–252 (2007).
    [41] L. Chen, L. Li, X. Wang, Z. Tian, and Z. Gui, “The study of Ca-doped BCTZ ceramics sintered in reducing atmosphere,” J. Electroceram, 21 [1-4] 569-572 (2008).
    [42] F. Moura, A. Z. Simões, B. D. Stojanovic, M. A. Zaghete, E. Longo, and J. A. Varela, “Dielectric and ferroelectric characteristics of barium zirconate titanate ceramics prepared from mixed oxide method,” J. Alloy. Compounds, 462 [1-2] 129-134 (2008).
    [43] R. D. Levi, Y. Tsur, “The Effect of Oxygen Vacancies in the Early Stages of BaTiO3 Nanopowder Sintering,” Adv. Mater., 17 [13] 1606-1608 (2005).
    [44] M. Unruan, A. Prasatkhetragarn, A. Ngamjarurojana, Y. Laosiritaworn, S. Ananta, R. Guo, A. Bhalla, and R. Yimnirun, “Dielectric and Ferroelectric Properties of Pb(Zr1/2Ti1/2)O3-Pb(Ni1/3Nb2/3)O3 Ceramics Under Perpendicular Compressive Stress,” Integ. Ferroelectrics, 114 [1] 25-34 (2010).
    [45] T. Hoshina, K. Takizawa, J. Li, T. Kasama, H. Kakemoto, and T. Tsurumi, “Domain Size Effect on Dielectric Properties of Barium Titanate Ceramics,” Jap. J. Appl. Phys., 47 [9] 7607–7611 (2008).
    [46] 朱冠宇,組成變化對X8R鈦酸鋇介電陶瓷之介電性質及顯微結構的影響之研究,國立成功大學資源工程研究所碩士論文,民國九十四年。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE