| 研究生: |
吳明輝 Huy, Ngo Minh |
|---|---|
| 論文名稱: |
生物急毒性-光電廢水污染物對Daphnia magna在水體環境中之影響 Biological Acute Toxicity: Determining the Effects of TFT-LCD Pollutants on Daphnia magna in Aquatic Systems |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 毒性試驗 、生態毒性 、重金屬 、水蚤 |
| 外文關鍵詞: | Toxicity tests, ecotoxicity, heavy metals, Daphnia magna |
| 相關次數: | 點閱:77 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水蚤因對環境汙染物相當敏感,故常被認為是淡水水體水質之指標浮游生物,更是生物急毒性試驗常用之物種。本研究針對不同放流水及各項化學物(包括 金屬鹽類、磷酸、氨氮等常見化合物),利用水蚤進行生物毒性試驗,觀察 48小時後之致死率,藉此評估各化學物質及放流水對承受水體的影響,檢驗是否符合排放標準。各金屬鹽類之48小時半致死濃度由高至低分別為:硫酸鋅、氯化鎳、氯化鈷、硫酸鋁、硫酸錳、硫酸鐵、氯化鈉、硫酸鎂、氯化鈉、硫酸鈉,以ICP-MS測量其中金屬濃度,計算各金屬之48小時半致死濃度(mg/L) 為:鎳,1.15、鈷,3.8、錳,7.2、鎂,80,由高至低排列分別為:銅、鎳、鈷、錳、鐵、鎂、鈉。在氮、磷部分,磷酸之半致死濃度為95 mg-PO43-/L,氨氮之生物毒性則隨pH值升高而提高,當pH由6.5 提高至7 時,其半致死濃度從155 mg-NH4Cl/L降低至19.5 mg-NH4Cl/L。本研究共針對9 股放 流水進行生物毒性測試,並量測其中之金屬濃度及氮磷含量,結果顯示此9股放流水中大多數金屬濃度皆很低,惟高濃度之鈉、鉀為其主要金屬物質,並造成放流水生物毒性,除此之外,磷酸亦為影響放流水毒性之重要化合物。
Daphnia magna has been used as a useful test species and its sensitivity to environmental pollutants has been recognized as a general representative of other freshwater zooplankton species. The aims of this study were using Daphnia magna to assess the acute toxicity of chemicals compounds and effluents for 48 h exposure to check the impact of effluents on the toxicity of the receiving water body to assure the compliance of toxicological emission limits. 48 h LC50 of inorganic chemical compounds were determined and rank order of toxicity as follows:
CuSO4.7H2O>ZnSO4.7H2O>NiCl2.6H2O>CoCl2.6H2O>Al2(SO4)3>MnSO4.4H2O>FeSO4.7H2O>MgSO4.7H2O>NaCl>Na2SO4. Chemical analysis with ICP/MS was conducted to determine the toxicity of metals in chemical compounds. The 48 h LC50
values in ppm of metals were: 1.15 for Ni, 3.8 for Co, 7.2 for Mn and 80 for Mg. The order of toxicity of metals in this study was: Cu>Ni>Co>Mn>Fe>Mg>Na. The toxicity of phosphate and ammonia also was tested. LC50 of phosphate was 95 mg.L-1 as PO43-. The ammonia toxicity was assessed at two different pH’s 6.5 and 7. The result showed that acute toxicity effect for Daphnia magna of total ammonia increases with increasing pH with LC50 at pH 6.5 and 7 was 155 and 19.5 mg.L-1 as NH4Cl, respectively. In this study, nine effluents were assessed for their toxicity and toxicity
levels. Toxicity of effluents was different based on acute toxic unit. Concentrations of metals in these effluents were measured. It was determined that concentrations of
heavy metals of effluents were very low. Na and K were found to be the major metals causing toxic effects of effluents because of high concentrations. Besides that,
phosphate was another component that affect to the toxic of effluents.
Abbas, H. H. (2006). Acute toxicity of ammonia to Common Carp Fingerlings
(Cyprinus carpio) at different pH levels. Pakistan Journal of Biological Sciences,
9(12), 2215-2221.
Adewuyi, G. O., Babayemi, J. O., & Olabanji, A. A. (2010). Assessment of toxicity of
effluents discharged into waterways by some industries in Nigeria: A Case Study
of Ibadan. The Pacific Journal of Science and Technology, 11(2), 538-543.
Akpor, O. B, & Muchie, M. (2011). Environmental and public health implications of
wastewater quality. African Journal of Biotechnology, 10(13), 2379-2387.
Aguayo, S., Muñoz, M. J., de la Torre, A., Roset, J., de la Peña, E., & Carballo, M.
(2004). Identification of organic compounds and ecotoxicological assessment of
sewage treatment plants (STP) effluents. Science of the Total Environment,
328(1–3), 69-81.
Al Jlil, S.A. (2010). Removal of heavy metals from industrial wastewater by
adsorption using local bentonite clay and roasted date pits in Saudi Arabial.
Trends in Applied Sciences Research, 5, 138-145.
Alonso, A., & Camargo, J. A. (2004). Toxic effects of unionized ammonia on survival
and feeding activity of the freshwater Amphipod Eulimnogammarus toletanus
(Gammaridae, Crustacea). Bulletin of environmental contamination and
toxicology, 72(5), 1052-1058.
Andersen, H. B., & Buckley, J. A. (1998). Acute toxicity of ammonia to Ceriodaphnia
dubia and a procedure to improve control survival. Bulletin of Environmental
Contamination and Toxicology, 61(1), 116-122.
Arthur, J., West, C., Allen, K., & Hedtke, S. (1987). Seasonal toxicity of ammonia to
five fish and nine invertebrate species. Bulletin of Environmental Contamination
and Toxicology, 38(2), 324-331.
Attar, E., & Maly, E. (1982). Acute toxicity of cadmium, zinc, and cadmium-zinc
mixtures to Daphnia magna. Archives of Environmental Contamination
Toxicology, 11(3), 291-296.
Augspurger, T., Keller, A. E., Black, M. C., Cope, W. G., Dwyer, F. J. (2003). Water
quality guidance for protection of freshwater mussels Unionidae from ammonia
exposure. Environmental Toxicology and Chemistry 22(11): 2569-2575.
Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake
from contaminated water: a review. Journal of Hazardous Materials, 97(1–3),
219-243.
84
Bae, J. S., & Freeman, H. S. (2007). Aquatic toxicity evaluation of copper-complexed
direct dyes to the Daphnia magna. Dyes and Pigments, 73(1), 126-132.
Barakat, M. A. (2011). New trends in removing heavy metals from industrial
wastewater. Arabian Journal of Chemistry, 4(4), 361-377.
Barata, C., Baird, D. J., & Markich, S. J. (1998). Influence of genetic and
environmental factors on the tolerance of Daphnia magna Straus to essential and
non-essential metals. Aquatic toxicology, 42(2), 115-137.
Barata, C., Baird, D. J., Nogueira, A. J. A., Soares, A. M. V. M., & Riva, M. C. (2006).
Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia
magna Straus. Implications for multi-substance risks assessment. Aquatic
toxicology, 78(1), 1-14.
Baudouin, M. F., & Scoppa, P. (1974). Acute toxicity of various metals to freshwater
zooplankton. Bulletin of environmental contamination and toxicology, 12(6),
745-751.
Bettinetti, R., Giarei, C., & Provini, A. (2003). Chemical analysis and sediment
toxicity bioassays to assess the contamination of the River Lambro (Northern
Italy). Archives of Environmental Contamination Toxicology, 45(1), 72-78.
Bianchini, A., & Wood, C. M. (2008). Does sulfide or water hardness protect against
chronic silver toxicity in Daphnia magna? A critical assessment of the
acute-to-chronic toxicity ratio for silver. Ecotoxicology and Environmental Safety,
71(1), 32-40.
BioTox Laboratory. (2001). Applied polymer systems, Inc. Acute Toxicity Testing on
704F Product. Law Engineering and Environmental Services, Inc. Kennesaw,
Georgia.
Blaise, C., & Ferard, J. F. (2005). Small-scale freshwater toxicity investigation (Vol 1).
Netherlands.
Botterweg, J., & Risselada, J. (1993). Toxicity assessment of effluents in the
Netherlands: implementation, problems and prospects. Science of the Total
Environment, 134(2), 1105-1113.
Braginskii, L. P. and Shcherban, E. P. (1978). Acute toxicity of heavy metals to
aquatic invertebrates at different temperatures, Hydrobiological Journal. 14,
78-82.
Bryant, V., McLusky, D. S., Roddie, K., and Newbery, D. M. (1984) Effect of
temperature and salinity on the toxicity of chromium to three
estuarine invertebrates (Corophium volutator, Macoma balthica, Nereis
diversieolor), Marine Ecogy Progress Series 20, 137-149.
85
Cañizares Villanueva, R. O., Martínez Jerónimo, F., & Espinosa Chávez, F. (2000).
Acute toxicity to Daphnia magna of effluents containing Cd, Zn, and a mixture
Cd-Zn, after metal removal by Chlorella vulgaris. Environmental toxicology,
15(3), 160-164.
Chambers, P. A., Kent, R., Charlton, M. N., Guy, M., Gagnon, C., Roberts E. S.,
Grove, E & Foster, N. (2001). Nutrients and their impact on the Canadian
environment. Environment Canada.
Clare, J. (2002). Daphnia: An aquarist's guide.
Constable, M., Charlton, M., Jensen, F., McDonald, K., Craig, G., & Taylor, K. W.
(2003). An ecological risk assessment of ammonia in the aquatic environment.
Human and ecological risk assessment: An International Journal, 9(2), 527-548.
Davis, F. (1992). Toxicity reduction:evaluation and control (Vol. 3). United State of
America: Technomic Publishing Company.
De Boeck, G., Vlaeminck, A., Van der Linden, A., & Blust, R. (2000). The energy
metabolism of Common carp (Cyprinus carpio) when exposed to salt stress: an
increase in energy expenditure or effects of starvation? Physiological and
Biochemical Zoology, 73(1), 102-111.
De Schamphelaere, K. A. C., Vasconcelos, F. M., Tack, F. M. G., Allen, H. E.,
Janssen, C. R. (2004). Effect of dissolved organic matter source on acute copper
toxicity to Daphnia magna. Environmental Toxicology and Chemistry, 23(5),
1248-1255.
Deleebeeck, N. M., De Schamphelaere, K. A., Heijerick, D. G., Bossuyt, B. T., &
Janssen, C. R. (2008). The acute toxicity of nickel to Daphnia magna: predictive
capacity of bioavailability models in artificial and natural waters. Ecotoxicology
and Environmental Safety, 70(1), 67-78.
Environment Agency. (2007).The direct toxicity assessment of aqueous environmental
samples using the juvenile Daphnia magna immobilisation test. Methods for the
Examination of Waters and Associated Materials.
Environment Canada. (1990). Biological test method: acute lethality test using
Daphnia spp. Environment Technology center. EPS 1/RM/11. Ottawa, Ontario.
Environment Canada. (1999). Canadian environmental protection act priority
substances list II–Supporting document for ammonia in the aquatic environment.
Environment Canada. (2000). Biological test method: reference method for
determining acute lethality of effluent to Daphnia magna. Environment
Technology center. EPS 1/RM/14. Ottawa, Ontario.
86
Environment Canada. (2001). Priority substances assessment report: ammonia in the
aquatic environment. Minister of Public Works and Government Services Canada,
Ottawa, ON, Canada.
Environment Canada. (2001). Priority substances list assessment report: Road salts.
Ottawa, Ontario.
Environment Canada. (2004). Canadian water quality guidelines for the protection of
aquatic life-Phosphorous: Canadian guidance framework for the management of
freshwater systems.
Environment Canada. (2010). Canadian water quality guidelines for the protection
of aquatic life-Ammonia. Canadian Council of Ministers of the Environment.
Environmental protection agency. (1997). Wastewater treatments manual: primary,
secondary and tertiary treatment. Ireland.
Environmental protection division. (2000). Ambient Water Quality Guidelines for
Sulphate-Overview Report. Government of British Columbia.
Ebert, D. Ecology, Epidemiology, and Evolution of Parasitism in Daphnia. Bethesda.
(2005). Chapter 2: Introduction to Daphnia Biology. National Center for
Biotechnology Information (US).
Elphick, J. R., Bergh, K. D., & Bailey, H. C. (2011). Chronic toxicity of chloride to
freshwater species: effects of hardness and implications for water quality
guidelines. Environmental Toxicology and Chemistry, 30(1), 239-246.
Ergonul, M. B., Atasagun, S., & Beser, T. (2012). The Acute Toxicity of Zinc chloride
on Daphnia magna Straus. Gazi University Journal of Science, 25(2), 313- 316.
Fjällborg, B., Li, B., Nilsson, E., & Dave, G. (2006). Toxicity identification
evaluation of five metals performed with two organisms (Daphnia magna and
Lactuca sativa). Archives of Environmental Contamination and Toxicology,
50(2), 196-204.
Franklin, N. M., Stauber, J. L., Markich, S. J., & Lim, R. P. (2000). pH-dependent
toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.).
Aquatic toxicology, 48(2–3), 275-289.
Fritioff, A., Kautsky, L., Greger, M. (2005). Influence of temperature and salinity
on heavy metal uptake by submersed plants. Environmental Pollution, 133
265–274.
Fu, F., Xie, L., Tang, B., Wang, Q., & Jiang, S. (2012). Application of a novel
strategy-Advanced Fenton-chemical precipitation to the treatment of strong
stability chelated heavy metal containing wastewater. Chemical Engineering
Journal, 189-190(0), 283-287.
87
Ghazy, M. M., Habashy, M. M., Kossa, F. I., Mohammady, E. Y. (2009). Effects of
salinity on survival, growth and reproduction of the water flea, Daphnia magna.
Nature and Science, 7(11), 28-42.
Ghosal, T. K., Kaviraj, A. (2002). Combined effects of cadmium and composted
manure to aquatic organisms. Chemosphere, 46(7), 1099-1105.
Goss, L. B., Bunting, D. L. (1983). Daphnia development and reproduction response
to temperature. Journal of Theoretical Biology. 8 (4), 375-380.
Guilhermino, L., Diamantino, T., Carolina Silva, M., & Soares, A. M. (2000). Acute
toxicity test with Daphnia magna: an alternative to Mammals in the prescreening
of chemical toxicity? Ecotoxicology and Environmental Safety, 46(3), 357-362.
Haag, C. R., Sakwińska, O., & Ebert, D. (2003). Test of synergistic interaction
between Infection and inbreeding in Daphnia magna. Evolution, 57(4), 777-783.
Hall, J. A., & Golding, L. (1998). Standard methods for whole effluent toxicity testing:
development and application. PO Box 11-115, Hamilton-New Zealand: National
Institute of Water & Atmospheric Research Ltd.
Hanazato, T. (2001). Pesticide effects on freshwater zooplankton: an ecological
perspective. Environmental Pollution, 112(1), 1-10.
Hebert, P. D., Remigio, E. A., Colbourne, J. K., Taylor, D. J., & Wilson, C. C. (2002).
Accelerated molecular evolution in halophilic custaceans. Evolution, 56(5),
909-926.
Heijerick, D. G., Janssen, C. R., & De Coen, W. M. (2003). The combined effects of
hardness, pH, and dissolved organic carbon on the chronic toxicity of Zn to
Daphnia magna: development of a surface response model. Archieves of
Environmental Contamination and Toxicology, 44(2), 0210-0217.
Hernando, M. D., Fernández-Alba, A. R., Tauler, R., & Barceló, D. (2005). Toxicity
assays applied to wastewater treatment. Talanta, 65(2), 358-366.
Jak, R. G., Maas, J. L., & Scholten, M. C. T. (1996). Evaluation of laboratory derived
toxic effect concentrations of a mixture of metals by testing fresh water plankton
communities in enclosures. Water Research, 30(5), 1215-1227.
Jo, H. J., & Jung, J. (2010). Surface response model for prediction of the acute toxicity
of Cu(II) and Cr(VI) toward Daphnia magna. Toxicology and Environmental
Health Sciences, 2(2), 141-147.
Jo, H. J., Son, J., Cho, K., & Jung, J. (2010). Combined effects of water quality
parameters on mixture toxicity of copper and chromium toward Daphnia magna.
Chemosphere, 81(10), 1301-1307.
88
Blaise, C & Férard, J. F. (2005). Small-scale Freshwater Toxicity Investigations, Vol
1, 337-393.
Kamaya, Y., Fukaya, Y., & Suzuki, K. (2005). Acute toxicity of benzoic acids to the
crustacean Daphnia magna. Chemosphere, 59(2), 255-261.
Khangarot, B. S., & Ray, P. K. (1989). Investigation of correlation between
physicochemical properties of metals and their toxicity to the water flea Daphnia
magna Straus. Ecotoxicology Environmental Safety, 18(2), 109-120.
Khangarot, B. S., Ray, P. K., & Chandr, H. (1987). Daphnia magna as a model to
assess heavy metal toxicity: comparative assessment with Mouse system. Acta
Hydrochimica et Hydrobiologica, 15(4), 427-432.
Kim, E., Jun, Y.-R., Jo, H.-J., Shim, S.-B., & Jung, J. (2008). Toxicity identification
in metal plating effluent: Implications in establishing effluent discharge limits
using bioassays in Korea. Marine Pollution Bulletin, 57(6–12), 637-644.
Kim, S. D., Ma, H., Allen, H. E., & Cha, D. K. (1999). Influence of dissolved organic
matter on the toxicity of copper to Ceriodaphnia dubia: Effect of complexation
kinetics. Environmental Toxicology and Chemistry, 18(11), 2433-2437.
Koivisto, S. (1995). Is Daphnia magna an ecologically representative zooplankton
species in toxicity tests? Environmental Pollution, 90(2), 263-267.
Komjarova, I., & Blust, R. (2008). Multi-metal interactions between Cd, Cu, Ni, Pb
and Zn in water flea Daphnia magna, a stable isotope experiment. Aquatic
toxicology, 90(2), 138-144.
Komjarova, I. (2009). Uptake of trace metals in aquatic organisms: a stable isotopes
experiment. PhD Thesis, Department of Biology, University of Antwerp-
Belgium.
Komjarova, I., & Blust, R. (2009). Effect of Na, Ca and pH on simultaneous uptake of
Cd, Cu, Ni, Pb, and Zn in the water flea Daphnia magna measured using stable
isotopes. Aquatic toxicology, 94(2), 81-86.
Lanciotti, E., Galli, S., Limberti, A., & Giovannelli, L. (2004). Ecotoxicological
evaluation of wastewater treatment plant effluent discharges: a case study in
Prato (Tuscany, Italy). Ann Ig, 16(4), 549-558.
Lei, C. N., Whang, L. M., & Chen, P. C. (2010). Biological treatment of thin-film
transistor liquid crystal display (TFT-LCD) wastewater using aerobic and
anoxic/oxic sequencing batch reactors. Chemosphere, 81(1), 57-64.
Long, K. E., Van Genderen, E. J., & Klaine, S. J. (2004). The effects of low hardness
and pH on copper toxicity to Daphnia magna. Environmental Toxicology and
Chemistry, 23(1), 72-75
89
Mansour, S. A., & Gad, M. F. (2010). Risk assessment of pesticides and heavy metals
contaminants in vegetables: A novel bioassay method using Daphnia magna
Straus. Food and Chemical Toxicology, 48(1), 377-389.
Martínez-Jerónimo, F., & Martínez-Jerónimo, L. (2007). Chronic effect of NaCl
salinity on a freshwater strain of Daphnia magna Straus (Crustacea: Cladocera):
A demographic study. Ecotoxicology and Environmental Safety, 67(3), 411-416.
Martins, J., Soares, M. L., Saker, M. L., OlivaTeles, L., & Vasconcelos, V. M. (2007).
Phototactic behavior in Daphnia magna Straus as an indicator of toxicants in the
aquatic environment. Ecotoxicology and Environmental Safety, 67(3), 417-422.
Meng, Q., Li, X., Feng, Q., & Cao, Z. (2008). The acute and chronic toxicity of five
heavy metals on the Daphnia magna. Bioinformatics and biomedical engineering,
2, 4555-4558.
Merrington, G., & Peters, A. (2012). The importance of dissolved organic carbon in
the assessment of environmental quality standard compliance for copper and zinc.
Water Framework Directive-United Kingdom Technical Advisory Group. 25
Greenside Place-Scotland.
Mount, D. R., Gulley, D. D., Hockett, J. R., Garrison, T. D., & Evans, J. M. (1997).
Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia,
Daphnia magna and Pimephales promelas (Fathead minnows). Environmental
toxicology and chemistry, 16(10), 2009-2019.
Movahedian, H., Bina, B., & Asghari, G. (2005). Toxicity evaluation of wastewater
treatment plant effluents using Daphnia magna. Iranian Journal of
Environmental Health Science & Engineering, 2(2), 1-4.
NPDES. (1998). Permit evaluation and fact sheet. Department of Environmental
Quality. State of Oregon.
OECD. (1998). OECD guideline for the testing of chemicals-Daphnia magna
reproduction test.
OECD. (2000). OECD guideline for the testing of chemicals-Daphnia magna
immobilisation test.
Olmstead, A. W., & LeBlanc, G. A. (2003). Insecticidal juvenile hormone analogs
stimulate the production of male offspring in the Crustacean Daphnia magna.
Environmental Health Perspectives, 111(7), 919-924.
Osada, T., Nemoto, K., Nakanishi, H., Hatano, A., Shoji, R., Naruoka, T., & Yamada,
M. (2011). Analysis of ammonia toxicity in landfill leachates. ISRN Toxicology,
2011, 6.
90
Park, E. J., Jo, H. J., & Jung, J. (2009). Combined effects of pH, hardness and
dissolved organic carbon on acute metal toxicity to Daphnia magna. Journal of
Industrial and Engineering Chemistry, 15(1), 82-85.
Penttinen, S., Kostamo, A., & Kukkonen, J. V. K. (1998). Combined effects of
dissolved organic material and water hardness on toxicity of cadmium to
Daphnia magna. Environmental toxicology and chemistry, 17(12), 2498-2503.
Persoone, G., Baudo, R., Cotman, M., Blaise, C., Thompson, K. C., Moreira-Santos,
M., Han, T. (2009). Review on the acute Daphnia magna toxicity test-
Evaluation of the sensitivity and the precision of assays performed with
organisms from laboratory cultures or hatched from dormant eggs. Knowledge
and Management of Aquatic Ecosystems (393).
Persoone, G., Van de Vel, A., Van Steertegem, M., & De Nayer, B. (1989). Predictive
value of laboratory tests with aquatic invertebrates: influence of experimental
conditions. Aquatic toxicology, 14(2), 149-167.
Poirier, D. G., Westlake, G. F., & Abernethy, S. G. (1988). Daphnia magna acute
lethality toxicity test protocol: Ontario Ministry of the Environment.
Preuss, T. G., Hammers-Wirtz, M., Hommen, U., Rubach, M. N., & Ratte, H. T.
(2009). Development and validation of an individual based Daphnia magna
population model: The influence of crowding on population dynamics.
Ecological Modelling, 220(3), 310-329.
Ra, J. S., Lee, B. C., Chang, N. I., & Kim, S. D. (2008). Comparative whole effluent
toxicity assessment of wastewater treatment plant effluents using Daphnia
magna. Bulletin of Environmental Contamination and Toxicology, 80(3),
196-200.
Reinboldand , K.A., & Pescitelli, S. M. (1982). Effect of exposure to ammonia on
sensitive life stages of aquatic organism. Center for aquatic ecology. Univeristy
of Illinois.
Sanchez Marin, P., Lorenzo, J. I., Mubiana, V. K., Blust, R., & Beiras, R. (2012).
Copper uptake by the marine mussel Mytilus edulis in the presence of fulvic
acids. Environmental Toxicology and Chemistry, 31(8), 1807-1813.
Sanchez Meza, J. C., Pacheco-Salazar, V. F., Pavon-Silva, T. B., Guierrez-Garcia, V.
G., Avila-Gonzalez Cde, J., & Guerrero-Garcia, P. (2007). Toxicity assessment
of a complex industrial wastewater using aquatic and terrestrial bioassays
Daphnia pulex and Lactuca sativa. Journal of Environmental Science and Health,
42(10), 1425-1431.
Santore, R. C., Di Toro, D. M., Paquin, P. R., Allen, H. E., & Meyer, J. S. (2001).
Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper
91
toxicity in freshwater fish and Daphnia. Environmental toxicology and chemistry,
20(10), 2397-2402.
Santore, R. C., Mathew, R., Paquin, P. R., & DiToro, D. (2002). Application of the
biotic ligand model to predicting zinc toxicity to Rainbow trout, Fathead minnow,
and Daphnia magna. Comparative Biochemistry and Physiology C-Toxicology &
Pharmacology, 133(1-2), 271-285.
Shaw, J. R., Pfrender, M. E., Eads, B. D., Klaper, R., Callaghan, A., Sibly, R. M.,
Colbourne, J. K. (2008). Daphnia as an emerging model for toxicological
genomics. In H. Christer & K. Peter (Eds.), Advances in Experimental Biology
(Vol. 2, pp. 165-328).
Reinbold, K. A.., Pescitelli, S. M. (1982). Effects of exposure to ammonia on sensitive
life stages of aquatic organisms. Aquatic Ecology Technical Report.
68-01-5832/A. University of Illinois.
Richardson, J. (1997). Acute ammonia toxicity for eight New Zealand indigenous
freshwater species. New Zealand Journal of Marine and Freshwater Research,
31(2), 185-190.
Solomon, F. (2008). Impacts of metals on aquatic ecosystems and human health.
Environment and Communities. Vancouver, British Columbia.
Sörme, L., & Lagerkvist, R. (2002). Sources of heavy metals in urban wastewater in
Stockholm. Science of the Total Environment, 298(1–3), 131-145.
Sotero Santos, R. B., Rocha, O., & Povinelli, J. (2005). Evaluation of water treatment
sludges toxicity using the Daphnia bioassay. Water Research, 39(16),
3909-3917.
Svetlana Yu, S., Yung Tse, H., Nadezda Yu, S., & Venera, L. (2005). Bioassay of
industrial waste pollutants waste treatment in the process industries (pp. 15-61).
Tarr, C. (2009). An overview of aquatic toxicity testing for NPDES permits. Great
Lakes Environmental Center.
Tatarazako, N., & Oda, S. (2007). The water flea Daphnia magna (Crustacea,
Cladocera) as a test species for screening and evaluation of chemicals with
endocrine disrupting effects on crustaceans. Ecotoxicology, 16(1), 197-203.
Teodorovic, I., Planojevic, I., Knezevic, P., Radak, S., & Nemet, I. (2009). Sensitivity
of bacterial vs. acute Daphnia magna toxicity tests to metals. Central European
Journal of Biology, 4(4), 482-492.
Tessier, A. J., Leibold, M. A., & Tsao, J. (2000). A fundamental trade-off in resource
exploitation by Daphnia and consequences to Plankton communities. Ecology,
81(3), 826-841.
92
Thurston, R. V., Russo, R. C., & Vinogradov, G. A. (1981). Ammonia toxicity to
fishes. Effect of pH on the toxicity of the unionized ammonia species.
Environmental Science & Technology, 15(7), 837-840.
Tyagi, V. K., Chopra, A. K., Durgapal, N. C., & Kumar, A. (2007). Evaluation of
Daphnia magna as an indicator of toxicity and treatment efficacy of municipal
sewage treatment plant. Journal of Applied Sciences and Environmental
Management, 11(1), 61-67.
USEPA. (1985). Ambient water quality criteria for chromium. EPA 440/5-84-029.
Washington, DC
USEPA. (1988). Ambient water quality criteria for chloride. EPA-440-5-88-001.
Office of Water. Washington, DC.
USEPA. (1994). Using toxicity tests in ecological risk assessment. Office of Solid
Waste and Emergency Response. Washington, D.C.
USEPA. (1998). Update of ambient water quality criteria for ammonia. Office of
Water. EPA 822-R-98-008. Washington, D.C.
USEPA. (2000). Understanding and accounting for method variability in whole
effluent toxicity applications under the national pollutant discharge elimination
system. Office of wastewater management. EPA 833-R-00-003. Washington,
D.C.
USEPA. (2002). Methods for measuring acute toxicity of effluents and receiving
waters to freshwater and marine organisms. Fifth edition. EPA 821-R-02-012.
Washington, D.C.
USEPA. (2002). National recommended water quality criteria. Office of water.
EPA-822-R-02-047.
Üstün, G. E., Solmaz, S. K. A., & Birgül, A. (2007). Regeneration of industrial district
wastewater using a combination of Fenton process and ion exchange-A case
study. Resources, Conservation and Recycling, 52(2), 425-440.
Verma, Y. (2008). Toxicity evaluation of effluents from dye and dye intermediate
producing industries using Daphnia bioassay. The Internet Journal of Toxicology,
4(2).
Verma, Y. (2011). Toxicity assessment of dye containing industrial effluents by acute
toxicity test using Daphnia magna. Toxicology and Industrial Health, 27(1),
41-49.
Verslycke, T., Ghekiere, A., Raimondo, S., & Janssen, C. (2007). Mysid crustaceans
as standard models for the screening and testing of endocrine-disrupting
chemicals. Ecotoxicology, 16(1), 205-219.
93
Villegas Navarro, A., González, M. C. R., López, E. R., Aguilar, R. D., & Marçal, W.
S. (1999). Evaluation of Daphnia magna as an indicator of toxicity and treatment
efficacy of textile wastewater. Environmental International, 25(5), 619- 624.
Wan Ngah, W. S., & Hanafiah, M. A. K. M. (2008). Removal of heavy metal ions
from wastewater by chemically modified plant wastes as adsorbents: A review.
Bioresource Technology, 99(10), 3935-3948.
Wang, N., Erickson, R. J., Ingersoll, C. G., Ivey, C. D., Brunson, E. L., Augspurger,
T., & Barnhart, M. C. (2008). Influence of pH on the acute toxicity of ammonia
to juvenile freshwater mussels (Fatmucket, Lampsilis siliquoidea).
Environmental Toxicology and Chemistry, 27(5), 1141-1146.
Washington State Department of Ecology. (2009). Biological testing methods 80-12
for the designation of dangerous waste. Hazardous Waste and Toxics Reduction
Program, Olympia, Washington.
Wang, W. (1987). Factors affecting metal toxicity to (and accumulation by) aquatic
organisms - Overview. Environment International, 13(6), 437-457.
Wright, D. A., & Welbourn, P. (2002). Environmental Toxicology (Vol. 11).
Universtiy Press, Cambridge: Press Syndicate of the University of Cambridge.
Xiang, F. H., Yang, W., Chen, Y. F., & Yang, Z. (2010). Acute toxicity of nitrite and
ammonia to Daphnia similoides of different developmental stages: using the
Modified Gaussian Model to describe. Bulletin of environmental contamination
and toxicology, 84(6), 708-711.
Yang, Z., Lü, K., Chen, Y., & Montagnes, D. J. S. (2012). The interactive effects of
ammonia and microcystin on fife-history traits of the Cladoceran Daphnia
magna. Synergistic or Antagonistic? PLoS ONE, 7(3), 32285.
Yim, J. H., Kim, K. W., & Kim, S. D. (2006). Effect of hardness on acute toxicity of
metal mixtures using Daphnia magna: Prediction of acid mine drainage toxicity.
Journal of Hazardous Materials, 138(1), 16-21.
You, S. H., & Tsai, Y. T. (2010). Using intermittent ozonation to remove fouling of
ultrafiltration membrane in effluent recovery during TFT-LCD manufacturing.
Journal of the Taiwan Institute of Chemical Engineers, 41(1), 98-104.
Zeman, F. A., Gilbin, R., Alonzo, F., Lecomte-Pradines, C., Garnier-Laplace, J., &
Aliaume, C. (2008). Effects of waterborne uranium on survival, growth,
reproduction and physiological processes of the freshwater cladoceran Daphnia
magna. Aquatic toxicology, 86(3), 370-378.