簡易檢索 / 詳目顯示

研究生: 簡豪池
Jian, Hao-Chih
論文名稱: 奈米球鏡微影術所製作奈米結構之費諾共振與圓二色性研究
Fano Resonance and Circular Dichroism in Nanostructures Fabricated by Nanospherical-Lens Lithography
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 78
中文關鍵詞: 表面電漿子奈米球鏡微影術FDTD費諾共振圓二色性
外文關鍵詞: Surface plasmons, Nanospherical-lens lithography (NLL), Finite difference time domain (FDTD) method, Fano Resonance, Circular Dichroism (CD)
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,主要探討能以奈米球鏡微影術(Nanospherical-Lens Lithography, NLL)所製作之奈米結構,使用有限差分時域法(Finite-Difference-Time-domain method, FDTD Method)模擬,研究以此製程技術能力可製造的材料,其表面電漿共振所展現出來的光學特性。
    奈米球鏡微影術即是以奈米球作為球透鏡,進而達到聚焦且控制曝光的效果,使用奈米球鏡微影術可以低成本的製造出大面積、週期性且均勻的奈米結構,由此技術可以製作出有序的金屬奈米圓盤以及奈米C型圓陣列,在耦合圓盤與C環的過程中,發現兩者之間Fano共振的效應,而經由多層環的疊加,也可以製造出具有圓二色性的超穎材料。

    In this thesis, we use finite difference time domain method to study the plasmonic resonant properties of nanostrucutres fabricated by nanospherical-lens lithography. Nanospherical-lens lithography is based on polystyrene nano-sphere as a spherical lens to achieve focusing and to control the exposure patterns. This method can produce large area, uniform, periodic nanostructures with low cost.

    We fist study the fabricated C shape and coupled dimer disks with C shape. We found there exist weak Fano resonant couplings. By stacking the disks with spiral arrangement or stacking C shape with 90° rotating between each layer, circular dichroism properties can be observed.

    摘要 I Abstract II 誌謝 V 目錄 VI 圖目錄 VIII 第一章 緒論 - 1 - 1.1 研究動機 - 1 - 1.2 本文內容 - 2 - 第二章 基本理論介紹 - 3 - 2.1 表面電漿子理論 - 3 - 2.1.1 表面電漿共振原理 - 3 - 2.1.2 局域性表面電漿共振 - 5 - 2.2 Fano Resonance費諾共振理論 - 8 - 2.3 Circular Dichroism圓二色性理論 - 9 - 2.3.1 雙各向同性(bi-isotropic)介質原理 - 9 - 2.3.2 Omega particle理論模型 - 15 - 2.3.3 Lagrange Jones模型 - 23 - 第三章 奈米球鏡微影術 - 35 - 3.1 奈米球自組裝排列技術 - 35 - 3.1.1 自組裝排列原理 - 35 - 3.1.2 自組裝排列裝置 - 36 - 3.2 奈米球鏡微影術之聚焦效果 - 37 - 3.3 奈米球鏡微影術應用 - 38 - 3.3.1 與正負光阻搭配之應用 - 38 - 3.3.2 搭配斜向蒸鍍法之應用 - 39 - 第四章 FDTD模擬方法 - 42 - 4.1 FTDT簡介 - 42 - 4.2 Yee Grid - 43 - 4.3 FDTD計算空間設置 - 44 - 第五章 結果與分析 - 45 - 5.1 金屬奈米圓盤與C環的交互作用 - 45 - 5.1.1 週期性結構的C環與奈米圓盤的耦合 - 45 - 5.1.2 C環不同波長與奈米圓盤的耦合 - 46 - 5.1.3 圓盤放大的影響 - 50 - 5.1.4 C環增厚的影響 - 52 - 5.1.5 金屬奈米圓盤與C環耦合之Fano Resonance - 54 - 5.1.6 圓盤與C環平移 - 56 - 5.1.7 與反轉的C環之耦合 - 57 - 5.2 C-Ring多層環結構的圓二色性 - 58 - 5.2.1 具旋光性的圓盤疊加結構 - 58 - 5.2.2 C環多層環結構 - 59 - 5.2.3 雙層C環結構之間距變化影響 - 73 - 第六章 結論 - 75 - 參考文獻 - 76 -

    [1] E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance.,” Advanced Materials, vol. 16, no. 19, pp. 1685–1706, Oct. 2004
    [2] 吳民耀、劉威志, “表面電漿子理論與模擬,” 物理雙月刊, vol. 二十八卷 二期, pp. 486–496, 2006
    [3] 曾賢德, “金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作,” 物理雙月刊, vol. 32卷2期, pp. 126–135, 2010.
    [4] 邱國斌、蔡定平, “金屬表面電漿簡介,” 物理雙月刊, vol. 二十八卷二期,pp. 472–485, 2006.
    [5] Fano, PR v124 p1866 (1961)
    [6] J.A Kong ,“Theorems of bianisotropic media,” IEEE .60,1036(1972)
    [7] E. U. CONDON ,“Theories of Optical Rotatory Power,” Review of Modern Physics 9,432,(1937)
    [8] C. M. Soukoulis ,” Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt.Exp. 18, 14553 (2010)
    [9] L.Poladian,M.Straton,A.Argyros ,“Pure chiral optical fibers,” Opt Exp. 19 ,968-980 (2011)
    [10] C. M. Soukoulis ,” Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt.Exp. 18, 14553 (2010)
    [11] S.A. 'l'retyakov', T.G. Kliarina', A.A. Socliaval, S. Uolioli “Measurements arid theory of reflection and transmission in bianisotropic omega composites,” IEEE 7 1864-7 (1995)
    [12] E.Hendry and M.Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotechnology 5. 783–787,(2010)
    [13] C. M. Soukoulis ,” Chiral metamaterials: retrieval of the effective parameters with and without substrate,” Opt.Exp. 18, 14553 (2010)
    [14] S.A. Tretyakov', T.G. Kharina', K.R. Simovskiz, A.A. Pavlov ,“Frequency dispersion in chiral and omega media: An approximate theoretical model”, IEEE 2 ,722,(1994)
    [15] X.Xiong,W.H. Sun, Y.J. Bao, M. Wang,R.W. Peng,C. Sun, X. Lu, J. Shao, Z.F. Li, and N.B. Ming ,“Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys.Rev. B 81, 075119 (2010)
    [16] N. Liu, H. Liu, S. Zhug and H. Giessen, “Stereometamaterials,” Nature Phontonics 3 ,157, (2009)
    [17] Na Liu and Harald Giessen “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Exp. 16, 21233-21238 (2008)
    [18] C. M. Soukoulis ,“Magnetic Metamaterials at Telecommunication and Visible Frequencies,” Phys.Rev.Lett. 95, 203901 (2005)
    [19] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayamat, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates.,” Langmuir, vol. 8, no. 12, pp. 3183–3190, 1992.
    [20] A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography : Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy.,” Langmuir, vol. 20, no. 16, pp. 6927–6931, 2004.
    [21] A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser Fabrication of Large-Scale Nanoparticle Arrays for Sensing Applications.,” ACSNANO, vol. 5, no. 6, pp. 4843–4849, 2011.
    [22] A. J. Haes, C. L. Haynes, A. D. Mcfarland, and G. C. Schatz, “Plasmonic Materials for Surface-Enhanced Sensing and Spectrosopy.,” MRS BULLETIN, vol. 30, no. May, 2005.
    [23] W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars.,” Nanotechnology, vol. 18, no. 48, p. 485302, Dec. 2007.
    [24] W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars.,” Nanoscale Research Letters, vol. 3, no. 3, pp. 123–127, Mar. 2008.
    [25] W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars.,” Nanoscale Research Letters, vol. 3, no. 3, pp. 123–127, Mar. 2008.
    [26] Y.-C. Chang, H.-C. Chung, S.-C. Lu, and T.-F. Guo, “A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor.,” Nanotechnology, vol. 24, no. 9, p. 095302, Mar. 2013.
    [27] S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates.,” ACS nano, vol. 6, no. 1, pp. 979–85, Jan. 2012.
    [28] Zheludev, “Optical Manifestations Of Planar Chirality,” Phys.Rev.Lett. 90,107404(2003)
    [29] N. I. Zheludev, “Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures,” Phys. Rev. Lett. , 91, 274404(2003)
    [30] M. Thiel,G. Freymann, and M. Wegener,“Layer-by-layer three-dimensional chiral photonic crystals,“ Opt. Lett. 32, 2047(2007)
    [31] M. Decker, M. W. Klein, and M. Wegener ,“Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett .32,856 (2007)

    無法下載圖示 校內:2020-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE