| 研究生: |
施昌宏 Shih, Chang-Hung |
|---|---|
| 論文名稱: |
交換式電源供應器的壽命分析及維修政策—以面板可靠度測試為例 Lifetime Analysis and Maintenance Policy of Switch Power Supply — A Case Study of Panel Reliability Test |
| 指導教授: |
謝中奇
Hsieh, Chung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 可靠度測試 、交換式電源供應器 、壽命分析 、維修 |
| 外文關鍵詞: | Reliability Test, Switch Power Supply, Lifetime Analysis, Maintenance |
| 相關次數: | 點閱:155 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣面板產業發展至今約二十年,在面板的可靠度測試過程中,許多種類的環境測試條件須仰賴著大量的交換式電源供應器,一直以來,對於交換式電源供應器在可靠度測試環境下的使用效益,並沒有實際探討的例子,而交換式電源供應器的故障失效,可能造成面板整個測試時程的延遲,或是使面板的測試時間不足,而誤導點檢判斷的正確性。本研究透過統計方法,分析不同測試條件下交換式電源供應器的壽命比較,並且訂定合宜的維修政策,供面板廠可靠度驗證部門對於交換式電源供應器的使用調配之參考依據,以發揮最大的效益。
經過數值分析,測試條件50°C的期望壽命明顯比65°C/90% RH的期望壽命長,因此得知測試條件的嚴苛程度對電源供應器有一定程度的影響;而在置換政策方面,兩種測試條件皆因為維修時間太長,而從全新品使用到第一次故障發生,即直接更換新品,不需進行維修,則有最高的單位時間獲利。另外,若能將單位延遲成本降低,因此維修時間縮短,則可以進行維修,不需第一次故障發生就直接置換新品。
This thesis studied the lifetime analysis and maintenance policy of switch power supply in the panel reliability test. In the process of a panel reliability test, environmental dynamic testing requires large quantities of switch power supplies to provide electricity for panels to function. If a switch power supply does not work properly, the test could fall behind schedule or testers misjudges data accuracy because of insufficient test time. At present, the maintenance policy of switch power supply in the company is that a new switch power supply is put in use, and repaired if it fails. The maintenance frequency of a switch power supply is at most three times. In other words, the repaired switch power supply is replaced with a new one when the fourth failure happens. In this study, samples of switch power supplies were tested under two testing conditions to estimate the expected lifetime under each testing condition as well as to compare the difference of the expected lifetimes between two testing conditions. The statistical analysis clearly showed that the expected lifetime at high temperature of 50°C was greater than the expected lifetime at high temperature of 65°C/ relative humidity of 90%. The result was in line with our expectation. Therefore, the harshness of testing conditions affects the lifetime of a switch power supply. This case study compared four maintenance policies and selected the most profitable policy per unit time as the best maintenance policy. However, if one policy could reduce the delay cost per unit, it could also be selected as the best policy.
一、中文文獻
王宗華 (2006),可靠度工程技術手冊-九五年三月出版六刷,中華民國品質學會,
台北市。
朱道鵬,徐世輝 & 王福琨 (2010). TFT-LCD 面板壽命研究. 品質學報,17(5),403-419.
宋自恆 & 林慶仁 (2002). 剖析切換式電源供應器的原理及常用元件規格. 新電子科技雜誌第 196期.
柯煇耀 (2004),可靠度保證-工程與管理技術之應用第四版,中華民國品質學會,
台北市。
陳泳丞 (2004),台灣的驚嘆號:台日韓 TFT 世紀之爭(Vol. 140),時報文化出版企業股份有限公司,台北市。
張文亮,葉瑞徽 & 洪維駿 (2016). 以全新及二手產品置換的最佳置換時程對成 本之影響. 管理研究學報,16(1),61-74.
二、英文文獻
Barlow, R., & Hunter, L. (1960). Optimum preventive maintenance policies. Operations Research, 8(1), 90-100.
Berg, M., & Epstein, B. (1978). Comparison of age, block, and failure replacement policies. IEEE Transactions on Reliability, 27(1), 25-29.
Escobar, L. A., & Meeker, W. Q. (2006). A Review of Accelerated Test Models. Statistical Science, 21(4), 552-577.
ISO 8402, 1986, Quality Vocabulary, International Organization for Standardization, Geneva, Switzerland.
IEC 60050-191, 1990, Dependability and quality of service, International Electrotechnical Commission, Geneva, Switzerland.
Jafary, B., Nagaraju, V., & Fiondella, L. (2017). Impact of correlated component failure on preventive maintenance policies. IEEE Transactions on Reliability, 66(2), 575-586.
Lotka, A. J. (1939). A contribution to the theory of self-renewing aggregates, with special reference to industrial replacement. The Annals of Mathematical Statistics, 10(1), 1-25.
Liao, H., & Guo, H. (2013, January). A generic method for modeling accelerated life testing data. In Reliability and Maintainability Symposium (RAMS), 2013 Proceedings-Annual (pp. 1-6). IEEE. Orlando.
Marchut, L., Meeder, M. G., & Stark, T. (2014). Process reliability screening in situ. Microelectronics Reliability, 54(2), 342-348.
Meeker, W. Q., & Escoba, L. A. (2004). Reliability: The other dimension of quality. Quality Technology & Quantitative Management, 1(1), 1-25.
Nakagawa, T., & Kijima, M. (1989). Replacement policies for a cumulative damage model with minimal repair at failure. IEEE Transactions on Reliability, 38(5), 581-584.
Nelson, W. B. (2005). A bibliography of accelerated test plans part II-references. IEEE transactions on Reliability, 54(3), 370-373.
Park, M., Jung, K. M., & Park, D. H. (2016). A Generalized Age Replacement Policy for Systems Under Renewing Repair-Replacement Warranty. IEEE Trans. Reliability, 65(2), 604-612.
Peiravi, A. (2009). Design of Halt and Environmental Stress Screening Procedures fo High Reliability Electronic Products to Reduce Life Cycle Costs. Australian Journal of Basic and Applied Sciences, 3.
Savage, I. R. (1956). Cycling. Naval Research Logistics, 3(3), 163-175.
Shao, Y., Wang, X., Xing, W., & Zhang, G. (2017, July). Correlation analysis of natural environment test and laboratory accelerated test. In Reliability Systems Engineering (ICRSE), 2017 Second International Conference on (pp. 1-5). IEEE.
Sheu, S. H., & Griffith, W. S. (2001). Optimal age-replacement policy with age-dependent minimal-repair and random-leadtime. IEEE Transactions on Reliability, 50(3), 302-309.
Tekcan, T., & Kirisken, B. (2010, January). Reliability test procedures for achieving highly robust electronic products. In Reliability and Maintainability Symposium (RAMS), 2010 Proceedings-Annual (pp. 1-6). IEEE. San Jose.
Weiss, G. H. (1956). On the theory of replacement of machinery with a random failure time. Naval Research Logistics, 3(4), 279-293.
校內:立即公開