| 研究生: |
黃鈺翔 Huang, Yu-Hsiang |
|---|---|
| 論文名稱: |
發展高解析度剪應力造影用於頸動脈:小鼠模型 Development of a high resolution wall shear stress imaging for carotid artery in mice model |
| 指導教授: |
黃執中
Huang, Chih-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 心血管疾病 、都卜勒成像 、高頻超音波 、超快速超音波成像 、向量都卜勒 、壁剪應力 、心脈搏波速度 、動脈粥樣硬化 、小鼠 、頸動脈 |
| 外文關鍵詞: | Cardiovascular diseases, Doppler imaging, High frequency ultrasound, Ultrafast ultrasound imaging, Vector Doppler, Wall shear stress, Pulse wave velocity, Atherosclerosis, Mouse, Carotid artery |
| 相關次數: | 點閱:72 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心血管疾病是最常見的非傳染性疾病,每年約帶走1780萬的生命。其中,心血管疾病最常見的病因是因為動脈粥樣硬化,而壁剪切應力是造成動脈粥樣硬化的原因之一。壁面剪切應力被認為是血流動力學的一個重要參數,並影響著血管內皮細胞的生長。內皮細胞功能障礙會導致動脈粥樣硬化中的血管平衡損失,從而導致心脈衝波傳播的速度異常。動脈粥樣硬化病變發展機制的相互作用複雜,在動物研究中測量壁面切應力和脈搏波速度也仍然存在許多問題。因此,在動物研究中,用來同時量測壁剪切應力和心脈衝波傳播速度作為研究工具為未來了解疾病發展機制是必要的。
本研究提出了基於40 MHz高頻超音向量都卜勒測量小鼠的頸動脈壁剪切應力成像和心脈衝波速度成像,並應用時間標記技術來解決混疊發生。在仿體實驗中,我們設計了穩定流實驗和脈動流實驗,以驗證在模擬小鼠頸動脈環境中測量性能的可靠性和準確性。在這兩個實驗中,所有測量值的誤差率都不超過10 %。在小鼠研究中,壁剪切應力和心脈衝波傳播速度成功地應用於小鼠頸動脈的分叉處。與野生型小鼠相比,載脂蛋白E基因敲除小鼠的頸動脈壁剪切應力和心脈衝波速度明顯增加。在載脂蛋白E基因敲除小鼠中,頸總動脈上方的時間平均壁剪切應力為1.89 ± 0.33 Pa,野生型小鼠為0.89 ± 0.27 Pa (p < 0.001),並且載脂蛋白E基因敲除小鼠的心脈衝波速度為3.30 ± 0.45 m/s,野生型小鼠為2.03 ± 0.31 m/s (p < 0.001)。
本文提出了使用高頻超音系統同時測量壁剪切應力和心脈衝波速度的技術,並成功用於評估小鼠的頸動脈。
Cardiovascular diseases (CVDs) are the most common non-communicable diseases and take an estimated 17.8 million lives each year. The most common cause of cardiovascular disease is atherosclerosis at the early stage, and wall shear stress (WSS) is one of the causes of atherosclerosis. WSS is considered to be an important parameter in hemodynamics and affects the vascular endothelium. Endothelial cell dysfunction contributes to vascular homeostasis loss in atherosclerosis, resulting in abnormal measurements of pulse wave propagation. At present, the interactions in the development of atherosclerotic lesions are still considered to be complex and there are still many problems in measuring the wall shear stress and pulse wave velocity (PWV) in the animal study. Therefore, simultaneous acquisition of the WSS and PWV parameters in animal studies is necessary as a research tool for future understanding of disease development mechanisms.
In this study, WSS imaging and PW imaging based on the 40 MHz high-frequency ultrafast ultrasound vector Doppler processing were proposed to measure the mice's carotid artery and applied the temporal registration to solve the occurrence of aliasing. In the phantom experiments, we prepared steady flow experiments and pulsatile flow Experiments for verifying the reliability and accuracy of the measurement performance in a simulated mice carotid environment. In both experiments, the error rate of all measured values did not exceed 10 %. In in vivo study, the WSS, and PWV were successfully applied to the bifurcation of the mice's carotid artery. The carotid artery WSS and PWV were significantly increased in ApoE-knockout (ApoE KO) mice compared to the wild type (WT) mice. Time average WSS magnitude value over the anterior common carotid artery (CCAa) were 1.89 ± 0.33 Pa in ApoE KO mice and 0.89 ± 0.27 Pa in WT mice (p < 0.001), and carotid artery PWV were 3.30 ± 0.45 m/s in WT mice and 2.03 ± 0.31 m/s in ApoE KO mice (p < 0.001).
The technique of using a high-frequency ultrafast ultrasound system to measure the WSS and PWV simultaneously was proposed in this paper and successfully used to assess the mice's carotid artery.
[1] C. J. McAloon et al., "The changing face of cardiovascular disease 2000-2012: An analysis of the world health organisation global health estimates data," Int J Cardiol, vol. 224, pp. 256-264, Dec 1 2016, doi: 10.1016/j.ijcard.2016.09.026.
[2] T. R. Einarson, A. Acs, C. Ludwig, and U. H. Panton, "Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017," Cardiovasc Diabetol, vol. 17, no. 1, p. 83, Jun 8 2018, doi: 10.1186/s12933-018-0728-6.
[3] A. E. Moran, G. A. Roth, J. Narula, and G. A. Mensah, "1990-2010 global cardiovascular disease atlas," Glob Heart, vol. 9, no. 1, pp. 3-16, Mar 2014, doi: 10.1016/j.gheart.2014.03.1220.
[4] S. Kaptoge et al., "World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions," The Lancet Global Health, vol. 7, no. 10, pp. e1332-e1345, 2019, doi: 10.1016/s2214-109x(19)30318-3.
[5] J. Frostegård, "Immunity, atherosclerosis and cardiovascular disease," BMC medicine, vol. 11, no. 1, pp. 1-13, 2013.
[6] J. Frostegård, "SLE, atherosclerosis and cardiovascular disease," Journal of internal medicine, vol. 257, no. 6, pp. 485-495, 2005.
[7] N. Di Pietro, G. Formoso, and A. Pandolfi, "Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis," Vascul Pharmacol, vol. 84, pp. 1-7, Sep 2016, doi: 10.1016/j.vph.2016.05.013.
[8] Y. Nakashima, T. N. Wight, and K. Sueishi, "Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans," Cardiovasc Res, vol. 79, no. 1, pp. 14-23, Jul 1 2008, doi: 10.1093/cvr/cvn099.
[9] C. Y. Liu et al., "Evolution of aortic wall thickness and stiffness with atherosclerosis: long-term follow up from the multi-ethnic study of atherosclerosis," Hypertension, vol. 65, no. 5, pp. 1015-9, May 2015, doi: 10.1161/HYPERTENSIONAHA.114.05080.
[10] C. Cochain and A. Zernecke, "Macrophages and immune cells in atherosclerosis: recent advances and novel concepts," Basic Res Cardiol, vol. 110, no. 4, p. 34, 2015, doi: 10.1007/s00395-015-0491-8.
[11] C. K. Zarins, D. P. Giddens, B. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov, "Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress," Circulation research, vol. 53, no. 4, pp. 502-514, 1983.
[12] T. Asakura and T. Karino, "Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries," Circ Res, vol. 66, no. 4, pp. 1045-66, Apr 1990, doi: 10.1161/01.res.66.4.1045.
[13] K. Andelovic et al., "2D Projection Maps of WSS and OSI Reveal Distinct Spatiotemporal Changes in Hemodynamics in the Murine Aorta during Ageing and Atherosclerosis," Biomedicines, vol. 9, no. 12, Dec 7 2021, doi: 10.3390/biomedicines9121856.
[14] A. Harloff et al., "In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI," Magn Reson Med, vol. 63, no. 6, pp. 1529-36, Jun 2010, doi: 10.1002/mrm.22383.
[15] J. W. Yang et al., "Wall shear stress in hypertensive patients is associated with carotid vascular deformation assessed by speckle tracking strain imaging," Clinical hypertension, vol. 20, no. 1, pp. 1-6, 2014.
[16] J. Díez, "Arterial stiffness and extracellular matrix," Atherosclerosis, Large Arteries and Cardiovascular Risk, vol. 44, pp. 76-95, 2007.
[17] F. Callaghan, L. Geddes, C. F. Babbs, and J. Bourland, "Relationship between pulse-wave velocity and arterial elasticity," Medical and Biological Engineering and Computing, vol. 24, no. 3, pp. 248-254, 1986.
[18] C. P. Cheng, D. Parker, and C. A. Taylor, "Quantification of wall shear stress in large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging," Ann Biomed Eng, vol. 30, no. 8, pp. 1020-32, Sep 2002, doi: 10.1114/1.1511239.
[19] C. H. Leow and M. X. Tang, "Spatio-Temporal Flow and Wall Shear Stress Mapping Based on Incoherent Ensemble-Correlation of Ultrafast Contrast Enhanced Ultrasound Images," Ultrasound Med Biol, vol. 44, no. 1, pp. 134-152, Jan 2018, doi: 10.1016/j.ultrasmedbio.2017.08.930.
[20] A. F. Stalder, M. F. Russe, A. Frydrychowicz, J. Bock, J. Hennig, and M. Markl, "Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters," Magn Reson Med, vol. 60, no. 5, pp. 1218-31, Nov 2008, doi: 10.1002/mrm.21778.
[21] A. Harloff et al., "Wall shear stress distribution at the carotid bifurcation: influence of eversion carotid endarterectomy," Eur Radiol, vol. 23, no. 12, pp. 3361-9, Dec 2013, doi: 10.1007/s00330-013-2953-4.
[22] P. Papathanasopoulou et al., "MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions," J Magn Reson Imaging, vol. 17, no. 2, pp. 153-62, Feb 2003, doi: 10.1002/jmri.10243.
[23] D. Martin, A. Zaman, J. Hacker, D. Mendelow, and D. Birchall, "Analysis of haemodynamic factors involved in carotid atherosclerosis using computational fluid dynamics," Br J Radiol, vol. 82 Spec No 1, pp. S33-8, Jan 2009, doi: 10.1259/bjr/59367266.
[24] C. Irace et al., "Human common carotid wall shear stress as a function of age and gender: a 12-year follow-up study," Age (Dordr), vol. 34, no. 6, pp. 1553-62, Dec 2012, doi: 10.1007/s11357-011-9318-1.
[25] J. P. Mynard, B. A. Wasserman, and D. A. Steinman, "Errors in the estimation of wall shear stress by maximum Doppler velocity," Atherosclerosis, vol. 227, no. 2, pp. 259-66, Apr 2013, doi: 10.1016/j.atherosclerosis.2013.01.026.
[26] P. D. Morris et al., "Computational fluid dynamics modelling in cardiovascular medicine," Heart, vol. 102, no. 1, pp. 18-28, Jan 2016, doi: 10.1136/heartjnl-2015-308044.
[27] T. Pereira, C. Correia, and J. Cardoso, "Novel Methods for Pulse Wave Velocity Measurement," J Med Biol Eng, vol. 35, no. 5, pp. 555-565, 2015, doi: 10.1007/s40846-015-0086-8.
[28] M. Karamanoglu, "Errors in estimating propagation distances in pulse wave velocity," Hypertension, vol. 41, no. 6, pp. e8-e8, 2003.
[29] I. Z. Apostolakis, S. D. Nandlall, and E. E. Konofagou, "Piecewise Pulse Wave Imaging (pPWI) for Detection and Monitoring of Focal Vascular Disease in Murine Aortas and Carotids In Vivo," IEEE Trans Med Imaging, vol. 35, no. 1, pp. 13-28, Jan 2016, doi: 10.1109/TMI.2015.2453194.
[30] J. Bercoff et al., "Ultrafast compound Doppler imaging: Providing full blood flow characterization," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 58, no. 1, pp. 134-147, 2011.
[31] I. C. Wang, H. Huang, W. T. Chang, and C. C. Huang, "Wall shear stress mapping for human femoral artery based on ultrafast ultrasound vector Doppler estimations," Med Phys, vol. 48, no. 11, pp. 6755-6764, Nov 2021, doi: 10.1002/mp.15230.
[32] G. Goudot et al., "Wall Shear Stress Measurement by Ultrafast Vector Flow Imaging for Atherosclerotic Carotid Stenosis," Ultraschall Med, vol. 42, no. 3, pp. 297-305, Jun 2021, doi: 10.1055/a-1060-0529. Messung der Wandschubspannung mit ultraschneller Vektorflussanalyse bei atherosklerotischer Karotisstenose.
[33] V. Perrot et al., "Translation of Simultaneous Vessel Wall Motion and Vectorial Blood Flow Imaging in Healthy and Diseased Carotids to the Clinic: A Pilot Study," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 68, no. 3, pp. 558-569, Mar 2021, doi: 10.1109/TUFFC.2020.3015340.
[34] G. S. van Bochove et al., "Molecular MR Imaging of Collagen in Mouse Atherosclerosis by Using Paramagnetic CNA35 Micelles," European Journal of Inorganic Chemistry, vol. 2012, no. 12, pp. 2115-2125, 2012, doi: 10.1002/ejic.201200010.
[35] S. F. Ding et al., "A causal relationship between shear stress and atherosclerotic lesions in apolipoprotein E knockout mice assessed by ultrasound biomicroscopy," Am J Physiol Heart Circ Physiol, vol. 298, no. 6, pp. H2121-9, Jun 2010, doi: 10.1152/ajpheart.00308.2009.
[36] C.-C. Chang, P.-Y. Chen, H. Huang, and C.-C. Huang, "In vivo visualization of vasculature in adult zebrafish by using high-frequency ultrafast ultrasound imaging," IEEE Transactions on Biomedical Engineering, vol. 66, no. 6, pp. 1742-1751, 2018.
[37] H. C. Li, P. Y. Chen, H. F. Cheng, Y. M. Kuo, and C. C. Huang, "In Vivo Visualization of Brain Vasculature in Alzheimer's Disease Mice by High-Frequency Micro-Doppler Imaging," IEEE Trans Biomed Eng, vol. 66, no. 12, pp. 3393-3401, Dec 2019, doi: 10.1109/TBME.2019.2904702.
[38] H. Huang, P. Y. Chen, and C. C. Huang, "40-MHz high-frequency vector Doppler imaging for superficial venous valve flow estimation," Med Phys, vol. 47, no. 9, pp. 4020-4031, Sep 2020, doi: 10.1002/mp.14362.
[39] K. BAEK, "A New Aliasing Extension Method For Ultrasonic 2-Dimensional Pulsed Doppler Systems," Ultrasonic Imaging, vol. 8, pp. 73-85, 1986.
[40] I. K. Ekroll, J. Avdal, A. Swillens, H. Torp, and L. Lovstakken, "An Extended Least Squares Method for Aliasing-Resistant Vector Velocity Estimation," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 63, no. 11, pp. 1745-1757, Nov 2016, doi: 10.1109/TUFFC.2016.2591589.
[41] K. K. Shung, Diagnostic ultrasound: Imaging and blood flow measurements. CRC press, 2005.
[42] A. A. Nair, M. R. Gubbi, T. D. Tran, A. Reiter, and M. A. L. Bell, "A fully convolutional neural network for beamforming ultrasound images," in 2018 IEEE International Ultrasonics Symposium (IUS), 2018: IEEE, pp. 1-4.
[43] L. Q. Gothard and J. Rosen, Encyclopedia of physical science. Facts on File, 2010.
[44] J. Bercoff, "Ultrafast ultrasound imaging," Ultrasound imaging-Medical applications, pp. 3-24, 2011.
[45] B. Delannoy, R. Torguet, C. Bruneel, and E. Bridoux, "Ultrafast electronical image reconstruction device," in Echocardiology: Springer, 1979, pp. 447-450.
[46] B. Delannoy, R. Torguet, C. Bruneel, E. Bridoux, J. Rouvaen, and H. Lasota, "Acoustical image reconstruction in parallel‐processing analog electronic systems," Journal of Applied Physics, vol. 50, no. 5, pp. 3153-3159, 1979.
[47] M. Tanter, J. Bercoff, L. Sandrin, and M. Fink, "Ultrafast compound imaging for 2-D motion vector estimation: Application to transient elastography," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 49, no. 10, pp. 1363-1374, 2002.
[48] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, "Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 56, no. 3, pp. 489-506, 2009.
[49] C. Vlachopoulos, M. O'Rourke, and W. W. Nichols, McDonald's blood flow in arteries: theoretical, experimental and clinical principles. CRC press, 2011.
[50] M. Benthin, P. Dahl, R. Ruzicka, and K. Lindström, "Calculation of pulse-wave velocity using cross correlation—effects of reflexes in the arterial tree," Ultrasound in medicine & biology, vol. 17, no. 5, pp. 461-469, 1991.
[51] E. Hermeling, K. D. Reesink, R. S. Reneman, and A. P. Hoeks, "Measurement of local pulse wave velocity: effects of signal processing on precision," Ultrasound in medicine & biology, vol. 33, no. 5, pp. 774-781, 2007.
[52] R. C. Hibbeler, Mechanics of materials. Pearson Educación, 2005.
[53] D. H. Evans, "Colour flow and motion imaging," Proc Inst Mech Eng H, vol. 224, no. 2, pp. 241-53, 2010, doi: 10.1243/09544119JEIM599.
[54] W. Song, L. Zhou, K. L. Kot, H. Fan, J. Han, and J. Yi, "Measurement of flow-mediated dilation of mouse femoral artery in vivo by optical coherence tomography," J Biophotonics, vol. 11, no. 11, p. e201800053, Nov 2018, doi: 10.1002/jbio.201800053.
[55] C. C. Huang, P. Y. Chen, P. H. Peng, and P. Y. Lee, "40 MH z high‐frequency ultrafast ultrasound imaging," Medical physics, vol. 44, no. 6, pp. 2185-2195, 2017.
[56] C.-J. Tang, P.-Y. Lee, Y.-H. Chuang, and C.-C. Huang, "Measurement of local pulse wave velocity for carotid artery by using an ultrasound-based method," Ultrasonics, vol. 102, p. 106064, 2020.
[57] J. Wang et al., "DBZ (Danshensu Bingpian Zhi), a Novel Natural Compound Derivative, Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice," J Am Heart Assoc, vol. 6, no. 10, Oct 2 2017, doi: 10.1161/JAHA.117.006297.
[58] P. Winter et al., "Simultaneous measurements of 3D wall shear stress and pulse wave velocity in the murine aortic arch," J Cardiovasc Magn Reson, vol. 23, no. 1, p. 34, Mar 18 2021, doi: 10.1186/s12968-021-00725-4.
[59] D. Schuler et al., "Measurement of endothelium-dependent vasodilation in mice--brief report," Arterioscler Thromb Vasc Biol, vol. 34, no. 12, pp. 2651-7, Dec 2014, doi: 10.1161/ATVBAHA.114.304699.
[60] O. Traub and B. C. Berk, "Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force," Arteriosclerosis, thrombosis, and vascular biology, vol. 18, no. 5, pp. 677-685, 1998.
[61] E. M. Cherry and J. K. Eaton, "Shear thinning effects on blood flow in straight and curved tubes," Physics of Fluids, vol. 25, no. 7, p. 073104, 2013.
[62] I. K. Ekroll, V. Perrot, H. Liebgott, and J. Avdal, "Tapered vector Doppler for improved quantification of low velocity blood flow," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 4, pp. 1017-1031, 2020.