| 研究生: |
張群和 Chang, Chin-He |
|---|---|
| 論文名稱: |
高溫環境下高鋁水泥之III型斷裂韌度量測與其基本力學性質之研究 A Study of Measuring the Mode III Fracture Toughness and Basic Mechanical Properties of Calcium Aluminate Cement at High Temperatures |
| 指導教授: |
王建力
Wang, Chein-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 斷裂力學 、III型斷裂韌度 、高鋁水泥 |
| 外文關鍵詞: | Fracture Mechanics, Mode III fracture toughness, Calcium aluminate cement |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對含邊緣裂縫之高鋁水泥(Calcium Aluminate Cement)試體,進行反平面剪力試驗以量測III型斷裂韌度。本研究之實驗條件為無圍壓及簡單荷重加載下,進行一套室內III型斷裂試驗程序,設計三種加載方式,分別為90o環狀邊緣加載、70o環狀邊緣加載及裂縫表面加載,探討III型斷裂韌度與其他力學性質之關聯性。
本研究之高鋁水泥,其Al2O3含量約為40%,以水灰比為0.4拌製純水泥漿,試體分成25℃、200℃、400℃三組溫度歷時,於指定溫度鍛燒24小時,待其降至25℃之後進行試驗,量測其密度、動態泊松比、III型斷裂韌度、單軸壓縮強度、壓入硬度指數、彎矩破壞模數。
本研究發現:70o環狀邊緣加載為可靠穩定之III型斷裂韌度量測方式,高鋁水泥經過鍛燒之後,其密度、動態泊松比、III型斷裂韌度、單軸壓縮強度、壓入硬度指數、彎矩破壞模數皆有下降之趨勢,III型斷裂韌度的下降情形與彎矩破壞模數較為接近,動態楊氏係數呈現先升後降的趨勢。
To measure the mode III fracture toughness (KIIIc) of calcium aluminate cement, single edge-cracked Brazilian disks under an anti-plane shear loading condition were proposed in this study. Three loading fixtures: 70o circular loading, 90o circular loading, and crack-edged loading, were arranged and compared in this study. A theoretical formula developed by Chen (2009) were adopted in this study. The disk specimens were prepared and made by calcium aluminate cement. The mode III fracture toughness test was applied by a simplistic load condition. These samples were calcined at 200℃, and 400℃, respectively, and were cooled to room temperature. Then a series of mechanical experiments were conducted on these samples. Correlations between various mechanical properties and mode III fracture toughness were discussed. Results show that experimental values of uniaxial compressive strength, indentation hardness index, modulus of rupture, and mode III fracture toughness decreases while temperature increases. It was observed that the relationships between mode III fracture toughness and modulus of rupture have the best linear correlation than others. The test proposed by Chen is a reliable method for measuring the mode III fracture toughness. The results also demonstrate that 70o circular loading condition achieves the most desirable experimental conditions.
1. 周威霆,「邊緣裂縫圓盤石膏III型斷裂韌度量測之研究」,國立成功大學資源工程所碩士論文,2012。
2. 帥玉康,「以平板彎曲試驗求取石材III型斷裂韌度之研究」,國立成功大學資源工程所碩士論文,2008。
3. 范天佑,「斷裂理論基礎」,科學出版社,2003。
4. 陳志豪,「複合楔形體之反平面剪力變形分析」,國立成功大學資源工程所博士論文,2009。
5. 陳楠輝,「邊緣裂縫圓盤岩石試體III型斷裂韌度量測之研究」, 國立成功大學資源工程所碩士論文,2014。
6. 楊廣里,「斷裂力學及應用」,中國鐵道出版社,1990。
7. 趙建生,「斷裂力學及斷裂物理」,華中科技大學出版社,2003。
8. Ahmadi-Moghadam, B., Taheri, F., “Influence of graphene nanoplatelets on modes I, II and III interlaminar fracture toughness of fiber-reinforced polymer composites,” Engineering Fracture Mechanics, vol. 143, pp. 97-107, 2015.
9. Aliha, M. R. M., et al., “Determination of mode III fracture toughness for different materials using a new designed test configuration,” Materials & Design, vol.86, pp. 863-871, 2015.
10. Aliha, M. R. M., et al., “Numerical analysis of a new mixed mode I/III fracture test specimen,” Engineering Fracture Mechanics, vol.134, pp. 95-110, 2015.
11. Anderson, T.L., “Fracture Mechanics,” CRC, pp. 13-15, 1991.
12. Antonovič, V., et al., “The Effect of Temperature on the Formation of the Hydrated Calcium Aluminate Cement Structure,” Procedia Engineering, vol.57, pp. 99-106, 2013.
13. Awaji, H., Sato, S., “Combined Mode Fracture Toughness Measurement by the Disk Method,” Journal of Engineering Materials and Technology, vol. 100(2), pp.175-182, 1978.
14. Ayatollahi, M. R., “Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading,” Computational Materials Science, vol. 38, pp. 660-670, 2007.
15. Ayatollahi, M. R.,“A new fixture for fracture tests under mixed mode I/III loading,” European Journal of Mechanics - A/Solids, vol.51, pp. 67-76, 2015.
16. Broek, D., “The practical use of fracture mechanics,” Kluwer Academic Publishers, pp. 22-35, 1988.
17. Demorais, A., Pereira, A., “Mixed mode II+III interlaminar fracture of carbon/epoxy laminates,” Composites Science and Technology, vol. 68(9), pp. 2022-2027, 2008 .
18. Donaldson, S.L., “Mode III Interlaminar Fracture Characterization of Composite Materials,” Composites Science and Technology, vol. 32, pp. 225-249, 1988.
19. Farshad, M., Flueler, P., “Investigation of mode III fracture toughness using an anti-clastic plate bending method,” Engineering Fracture Mechanics, vol. 60, No. 5-6, pp. 597-603, 1998.
20. Griffith, A.A., “The phenomena of rupture and flow in solids,” Phil. Trans. Roy. Soc., London Series A221, pp.163-198, 1921.
21. Inglis, C.E., “Stresses in a plane due to the presence of cracks and sharp corners,” Trans. Inst. Naval Architects, London LV, pp. 219-230, 1913.
22. Irwin, G.R., “Analysis of stresses and strains near the end of cracking traversing a plate,” J. Appl. Mech., vol. 24, pp. 361-364, 1957.
23. Irwin, G.R., “Fracture dynamics,” Fracturing of Metals, American Society of Metals, pp. 147-166, 1948.
24. Khaliq, W., “High temperature material properties of calcium aluminate cement concrete,” Construction and Building Materials, vol.94, pp.475–487, 2015
25. Lee, W.E., J. Li, “Evaluation of the edge crack torsion test for mode III interlaminated fracture tough-ness of laminated composites,” NASA Technical Memorandum 110264 U.S. Army research laboratory technical report 12101, 1996.
26. Lea, F.M., “The chemistry of cement and concrete,” Chemical Publishing Company, pp.490-527, 1971.
27. Maaroufi, M., “Thermo-hydrous behavior of hardened cement paste based on calciumaluminate cement,” Journal of the European Ceramic Society, vol. 35, pp.1637-1646, 2015.
28. Martinović, S., et al., “Thermal and Mechanical Properties of High Alumina Low Cement Castable,” Association of Metallurgical Engineers of Serbia, 2011.
29. Mehrabadi, F.A., “The use of ECT and 6PBP tests to evaluate fracture behavior of adhesively bonded steel/epoxy joints under Mode-III and Mixed Mode III/II,” Asgari Mehrabadi Applied Adhesion Science, vol. 2:18, 2014.
30. Morais, A.B., Pereira, A.B., “Mixed mode II + III interlaminar fracture of carbon/epoxy laminates,” Composites Science and Technology, vol.68, pp.2022-2027, 2008.
31. Orowan, E., “Internal stresses in metals and alloys,” Institute of Metals, 1948.
32. Pacewska, B., “Studies of conversion progress of calcium aluminate cement hydrates by thermal analysis method,” Journal of Thermal Analysis and Calorimetry, vol.117, pp.653–660, 2014.
33. Podczeck, F., “The determination of fracture mechanics properties of pharmaceutical materials in mode III loading using an anti-clastic plate bending method,” International Journal of Pharmaceutics, Volume 227, Issues 1–2, pp.39-46, 2001.
34. Sharif, F., et al., “Mode III delamination using a split cantilever beam,” Composite Materials: Fatigue and Fracture, vol. 5, ASTM STP 1230, ASTM, Philadelphia, pp. 85-99, 1995.
35. Suresh, S., et al., “Mixed-Mode Fracture Toughness of Ceramic Materials,” Journal of the American Ceramic Society, Vol. 73, Issue 5, pp. 1287-1267, 1990.
36. Szekrényes, A., “Delamination fracture analysis in the GII–GIII plane using prestressed transparent composite beams,” International Journal of Solids and Structures, vol.44(10), pp.3359-3378, 2007.
37. Taylor, H.F.W., “Cement chemistry,” Academic Press, pp.316-332, 1990.
38. Whittaker, B.N., “Rock Fracture Mechanics,” Elseiver, pp.71-79, 1992.
39. Wieghardt, K., “On the cleavage and fracture of elastic bodies,” Mathematic and Physic, vol. 55(1-2), pp. 60-103, 1907.
40. Zehnder, A. T., “Fracture Mechanics,” Springer, pp.7-12, 2012.