| 研究生: |
許樂群 Shiu, Ler-Chun |
|---|---|
| 論文名稱: |
橋接雙釕與雙銅錯合物的合成,構造及特性之研究 Study on Synthesis, Structures, and Properties of Bridged Diruthenium and Dicopper Complexes |
| 指導教授: |
吳天賞
Wu, Tian-Shung 許拱北 Shiu, Kom-Bei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 267 |
| 中文關鍵詞: | 超分子化學 、自組裝 、動態系統 、密度泛函計算 、一氧化氮配位基 、銅 、釕. |
| 外文關鍵詞: | Supramolecular, Self-assembly, Dynamic systems, DFT(Density Functional Theory) calculation, Nitrosyl, Copper, Ruthenium. |
| 相關次數: | 點閱:113 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超分子盒子能經由對稱-作用,方向-鍵結,微弱-吸引,及動態-組裝等途徑合成.雙銅錯合物[Cu2(μ-dppm)2(μ-OAc)]+及各種sigma donor (L; L = py, MeCN, THF, Acetone, MeOH)的實驗及理論研究與雙銅錯合物[Cu2(μ-dppm)2(μ-O2CR)]+及雙py化合物(NN, NN = 4,4’-dipyridine (bpy),1,2-乙基雙(4-py)(bpa),反式1,2-乙烯雙(4-py)(bpe),1,3-丙基雙(4-py)(tmp))的研究,引導我們去研究肆銅錯合物[{Cu2(μ-dppm)2}2(μ-1,3-C6H4(CO2)2)]2+及NN,意外地發現NN的剛柔性質會決定動態反應的產物種類.使用柔性及剛性NN,會分別得到超分子盒子和配位高分子.肆銅錯合物[{Cu2(μ-dppm)2}2(μ-1,4-C6H4(CO2)2)]2+及NN會形成帶正電荷之長方形超分子盒子[{(Cu2(μ-dppm)2)2(μ-1,4-C6H4(CO2)2)}2(μ-bpa)2]4+;一個及三個(BF4-)陰離子分別在盒內與盒外.研究發現盒子/陰離子間微弱的靜電吸引力能穩定帶正電荷之超分子盒子的動態組裝.
含NO2及NO3雙釕錯合物[Ru2(μ-CO)2(κ2-(O,O’)-NO2)2(μ-dppm)2] (2-6) 和[Ru2(μ-CO)2(κ2-(O,O’)-NO3)2(μ-dppm)2] (2-10)成功合成出來,化合物2-6可以轉變為[Ru2(μ-dppm)2(μ-CO)2(MeCN)4](BF4)2,[Ru2(μ-dppm)2(CO)2(tBuNC)4](PF6)2,[Ru2(μ-dppm)2(CO)2(μ-NO)(μ-Cl)Cl2] (2-8),及[Ru2(μ-dppm)2(CO)2(μ-H)(μ-Cl)Cl2] (2-9)。其中,化合物2-6,2-8,2-9及2-10已使用X光繞射解析其單晶構造。
Supramolecular cages can be synthesized via symmetry-interaction, directional-bonding, weak-link, and dynamic-self-assembly approaches. Both experimental and theoretical study of a simple dynamic system formed between dicopper complex [Cu2(μ-dppm)2(μ-OAc)]+ and various sigma donors (L; L = py, MeCN, THF, acetone, MeOH) in CH2Cl2 and study of that between dicopper complexes [Cu2(μ-dppm)2(μ-O2CR)]+ and neutral dipyridyl compound (NN, NN = 4,4’-bipyridine (bpy), 1,2-bis(4-pyridyl)ethane (bpa), and trans-1,2-bis(4-pyridyl)ethylene (bpe), and 4,4’-trimethylenedipyridine (tmp)) led us to study dynamic systems between tetracopper complex [{Cu2(μ-dppm)2}2(μ-1,3-C6H4(CO2)2)]2+ andNN (NN = bpa, tmp, bpy), unexpectedly finding that the flexibility of NN can determine the outcome of the dynamic reactions. The flexible NN can convert the tetracopper complex into supramolecular cages, but the rigid NN can convert the complex into a coordination polymer. The dynamic system between tetracopper complex [{Cu2(μ-dppm)2}2(μ-(1,4-C6H4(CO2)2)]2+ andNN (NN = bpa, bpy) can produce a rectangular cationic cage [{(Cu2(μ-dppm)2)2(μ-1,4-C6H4(CO2)2)}2(μ-bpa)2]4+ with an anion (BF4-) inside and three other anions outside. The study finds that the weak electrostatic interactions between the cationic cage and the anion are important in stabilizing the dynamically self-assembled cages.
Diruthenium carbonyl complexes containing two nitrito and nitrato ligands, [Ru2(μ-CO)2(κ2-(O,O’)-NO2)2(μ-dppm)2] (2-6) and [Ru2(μ-CO)2(κ2-(O,O’)-NO3)2(μ-dppm)2] (2-10), were prepared. Conversion reactions of compound 2-6 into [Ru2(μ-dppm)2(μ-CO)2(MeCN)4](BF4)2, [Ru2(μ-dppm)2(CO)2(tBuNC)4](PF6)2, [Ru2(μ-dppm)2(CO)2(μ-NO)(μ-Cl)Cl2] (2-8), and [Ru2(μ-dppm)2(CO)2(μ-H)(μ-Cl)Cl2] (2-9) were also studied. Crystal structures of compounds 2-6, 2-8, 2-9, and 2-10 were determined by X-ray crystallography.
References for chapter 1
1. Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Coord. Chem. Rev. 2008, 252, 825.
2. Hof, F.; Craig, S. L.; Nuckools, C.; Rebek, Jr. J. Angew. Chem. Int. Ed. Engl. 2002, 41, 1488.
3. Inokuma, Y.; Kawano, M.; Fujita, M. Nature Chem. 2011, 3, 349.
4. Merlau, M. L.; Mejia, S. D. P.; Nguyen, S. T.; Hupp, J. T. Angew. Chem. Int. Ed. 2011, 40, 4239.
5. Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2005, 38, 351.
6. Inokuma, Y.; Arail, T.; Fujita, M. Nature Chem. 2010, 2, 780.
7. Inokuma, Y.; Yoshioka, S.; Ariyoshi, J.; Arai, T.; Takada, K.; Matsunaga, S.; Rissanen, K.; Fujita, M. Nature, 2013, 495, 461.
8. Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. Science, 2009, 324, 1697.
9. Kumar, A.; Sun, S.-S.; Lee, A. J. Coord. Chem. Rev. 2008, 252, 922.
10. Atwood, J. L.; Barbour, L. J.; Dalgarno, S. J.; Hardie, M. J.; Raston, C. L.; Webb, H. R. J. Am. Chem. Soc. 2004, 126, 13170.
11. Holliday, B. J.; Mirkin, C. A. Angew. Chem. Int. Ed. 2001, 40, 2022.
12. Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975.
13. (a) Stricklen, P. M.; Volcko, E. J.; Verkade, J. G. J. Am. Chem. Soc. 1983, 105, 2494. (b) Fujita, M.; Ogura, K. Coord. Chem. Rev. 1996, 148, 249. (c) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853.
14. Gianneschi, N. C.; Masar III, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825.
15. Lehn, J.-M. Chem. Eur. J. 1999, 5, 2455.
16. Corbett. P. T.;; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J.-L.; Sanders, J. K. M.; Otto, S. Chem. Rev. 2006, 106, 3652.
17. (a) Lehn, J.-M. Chem. Soc. Rev. 2007, 36, 151. (b) Lehn, J.-M. Angew. Chem. Int. Ed. 2013, 52, 2836.
18. Ladame, S. Org. Biomol. Chem. 2008, 6, 219.
19. Custelcean, R. Top. Curr. Chem. 2012, 322, 193.
20. (a) Hasenknopt, B.; Lehn, J.-M.; Kneisel, B. O.; Baum, G.; Fenske, D. Angew. Chem. Int. Ed. Engl. 1996, 35, 1838. (b) Hasenknopt, B.; Lehn, J.-M.; Boumediene, N.; Dupont-Gervais, A.; Dorsselaer, A. V.; Kneisel, B.; Fenske, D. J. Am. Chem. Soc. 1997, 119, 10956.
21. Campos-Fernandez, C. S.; Schottel, B. L.; Chifotides, H. T.; Bera, J. K.; Basca, J.; Koomen, J. M.; Russell, D. H.; Dunbar, K. R. J. Am. Chem. Soc. 2005, 127, 12909.
22. (a) Crook, G. R.; Johnson, B. F. G.; Williams, I. G.; Gamlen, G. J. Chem. Soc. A, 1969, 2761. (b) Spohn, M.; Vogt, T.; Strähle, J. Z. Naturforsch, 1986, B41, 1373.
23. Shiu, K.-B.; Peng, S.-M.; Cheng, M.-C. J. Organomet. Chem. 1993, 452, 143.
24. Shiu, K.-B.; Lee, H.-C.; Lee, G.-H.; Wang, Y. Organometallics, 2002, 21, 4013.
25. Shiu, K.-B.; Lee, H.-C.; Lee, G.-H.; Ko, B.-T.; Wang, Y.; Lin, C.-C. Angew. Chem. Int. Ed. Engl. 2003, 42, 2999.
26. Shiu, K.-B.; Lee, H.-C.; Lee, G.-H. Cryst. Growth Des. 2010, 10, 2083.
27. Wang, C.-T.; Shiu, L.-C. ; K.-B. Shiu, Chem. Eur. J. 2015, 21, 7026.
28. Diez, J.; Gamasa, M. P.; Gimeno, J.; Tiripicchio, A.; Camellini, M. T. J. Chem. Soc. Dalton Trans. 1987, 1275.
29. Diez, J.; Gamasa, P.; Gimeno, J.; Lanfranchi, M.; Tiripicchio, A. J. Chem. Soc. Dalton Trans. 1990, 1027.
30. Harvey, P. D.; Drouin, H.; Zhang, T. Inorg. Chem. 1997, 36, 4998.
31. Shiu, K.-B.; Liu, S.-A.; Lee, G.-H. Inorg. Chem. 2010, 49, 9902.
32. Chuang, Jen-Han, Master Thesis, National Cheng Kung University, July 2012.
33. Liu, Shih-An, Ph. D. Thesis, National Cheng Kung University, July 2011.
34. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
35. Sheldrick, G. M. SHELXTL-97, University of Göttingen, Göttingen, Germany.
36. Bondi, A. J. Phys. Chem. 1964, 68, 441.
37. Jiang, K.; Zhao, D.; Guo, L.-B.; Zhang, C.-J.; Yang, R.-N. Chin. J. Chem. 2004, 22, 1297.
38. Guo, L.-B.; Zhao, D.; Zheng, X.; Zhang, X.; Yang, R. Russ. J. Inorg. Chem. 2005, 50, 1681.
39. Bondi, A. J. Phys. Chem. 1964, 68, 441.
40. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, Wiley, New York, NY, 2000, p. 23.
References for chapter 2
1. Binkerd, E. F.; Kolari, O. E. Food Cosmet. Toxicol. 1975, 13, 661.
2. Pearson, A. M.; Gillett, T. A. (Eds.) Processed Meats, third ed., Chapman & Hall, New York, NY, 1996.
3. Sincelar, J. J.; Milkowski, A. L. Nitric Oxide, 2012, 26, 259.
4. http://msds.chem.ox.ac.uk/SO/sodium_nitrite.html.
5. https://en.wikipedia.org/wiki/Sodium_nitrite.
6. Hord, N. G.; Tang, Y.; Bryan, N. S. Am. J. Clin. Nutr. 2009, 90, 1.
7. Hunault, C. C.; van Velzena, A. G.; Sips, A.; Schothorst, R. C.; Meulenbelt, J. Toxidcol. Lett. 2009, 190, 48.
8. Bryan, N. S.; Calvert, J. W.; Elmod, J. W.; Gundewar, S.; Ji, S. Y.; Lefer, D. J.; Proc. Natl. Acad. Sci. USA, 2007, 104, 19144.
9. Maia, L. B.; Moura, J. G. Chem. Rev. 2014, 114, 5273.
10. Hichman, M. A,; Rowbottom, G. L. Coord. Chem. Rev. 1982, 42, 55.
11. Nakamoto, K. Ed. Infrared and Raman Spectra of Inorganic and Coordination Compounds, fourth ed., John Wiley & Sons, 1986.
12. (a) Basolo, F.; Hammaker, G. S. Inorg. Chem. 1962, 1, 1. (b) Jackson, E. G.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M. Inorg. Chem. 1980, 19, 904. (c) Adell, B. Z. Anorg.
Allgeem. Chem. 1955, 279, 219.
13. Booth, G.; Chatt, J. J. Chem. Soc. 1962, 2099.
14. Shiu, K.-B.; Chang, C.-J. J. Organomet. Chem. 1990, 395, C47.
15. Johnson, B. F. G.; Sieker, A.; Blake, A. J.; Winpenny, R. E. P. J. Organomet. Chem. 1994, 475, 193.
16. Shiu, K.-B.; Yang, L.-T.; Wei, S.-W.; Li, C.-H.; Wu, R.-R.; Wang, J.-C.; Liou, L.-S.; Chiang, M. Y. Inorg. Chem. 1996, 35, 7845.
17. Fairlamb, I. J. S. Angew. Chem. Int. Ed. 2015, 54, 10415.
18. Tamura, M.; Yasui, T. Chem. Commun. 1968, 1209.
19. (a) Kuznetsova, N. I.; Danilyuk, A. F.; Likholobov, V. A.; Yermakov, Y. I. React. Kinet. Catal. Lett. 1979, 12, 235. (b) Kuznetsova, N. I.; Likholobov, V. A.; Fedotov, M. A.; Yerrnakov, Y. I. J. Chem. Soc. Chem. Commun. 1982, 973.
20. Shiu, K.-B.; Chang, C.-J. J. Organomet. Chem. 1990, 395, C47.
21. Caulton, K. G. Coord. Chem. Rev. 1975, 14, 317.
22. Shiu, K.-B.; Li, C.-H.; Chan, T.-J.; Peng, S.-M.; Cheng, M.-C.; Wang, S.-L; Liao, F.-L.; Chiang, M. Y. Organometallics, 1995, 14, 524.
23. Shiu, K.-B.; Young, S.-S.; Chen, S.-I; Chen, J.-Y.; Wang, H.-J.; Wang, S.-L.; Liao, F.-L.; Peng, S.-M.; Liu, Y.-H. Organometallics, 1999, 18, 4244.
24. Gordon, A. J.; Ford, R. A. (Eds.), The Chemist’s Companion, 4th ed.; Wiley: New
York, 1972.
25. Sherlock, S. J.; Cowie, M.; Singleton, E.; Steyn, M. M. d. V. Organometallics, 1988, 7, 1663.
26. Lee, Chun-Yi, Mater Thesis, National Cheng Kung University, January 2017.
27. (a) Sheldrick, G. M. SHELXL-97, University of Göttingen, Göttingen, Germany. (b) Sheldrick, G. M. Acta Cryst. 2015, C71, 3.
28. Richter-Addo, G. B.; Legzdins, P. Metal Nitrosyls, Oxford, New York, 1992, p. 64.
29. https://en.wikipedia.org/wiki/Metal_carbonyl.
30. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, Wiley, New York, 2000, p. 23.
31. Crabtree, R. H. The Organometallic Chemistry of The Transition Metals, 6th ed., Wiley, New York, 2014, p. 40.