簡易檢索 / 詳目顯示

研究生: 許樂群
Shiu, Ler-Chun
論文名稱: 橋接雙釕與雙銅錯合物的合成,構造及特性之研究
Study on Synthesis, Structures, and Properties of Bridged Diruthenium and Dicopper Complexes
指導教授: 吳天賞
Wu, Tian-Shung
許拱北
Shiu, Kom-Bei
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 267
中文關鍵詞: 超分子化學自組裝動態系統密度泛函計算一氧化氮配位基釕.
外文關鍵詞: Supramolecular, Self-assembly, Dynamic systems, DFT(Density Functional Theory) calculation, Nitrosyl, Copper, Ruthenium.
相關次數: 點閱:113下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超分子盒子能經由對稱-作用,方向-鍵結,微弱-吸引,及動態-組裝等途徑合成.雙銅錯合物[Cu2(μ-dppm)2(μ-OAc)]+及各種sigma donor (L; L = py, MeCN, THF, Acetone, MeOH)的實驗及理論研究與雙銅錯合物[Cu2(μ-dppm)2(μ-O2CR)]+及雙py化合物(NN, NN = 4,4’-dipyridine (bpy),1,2-乙基雙(4-py)(bpa),反式1,2-乙烯雙(4-py)(bpe),1,3-丙基雙(4-py)(tmp))的研究,引導我們去研究肆銅錯合物[{Cu2(μ-dppm)2}2(μ-1,3-C6H4(CO2)2)]2+及NN,意外地發現NN的剛柔性質會決定動態反應的產物種類.使用柔性及剛性NN,會分別得到超分子盒子和配位高分子.肆銅錯合物[{Cu2(μ-dppm)2}2(μ-1,4-C6H4(CO2)2)]2+及NN會形成帶正電荷之長方形超分子盒子[{(Cu2(μ-dppm)2)2(μ-1,4-C6H4(CO2)2)}2(μ-bpa)2]4+;一個及三個(BF4-)陰離子分別在盒內與盒外.研究發現盒子/陰離子間微弱的靜電吸引力能穩定帶正電荷之超分子盒子的動態組裝.
    含NO2及NO3雙釕錯合物[Ru2(μ-CO)2(κ2-(O,O’)-NO2)2(μ-dppm)2] (2-6) 和[Ru2(μ-CO)2(κ2-(O,O’)-NO3)2(μ-dppm)2] (2-10)成功合成出來,化合物2-6可以轉變為[Ru2(μ-dppm)2(μ-CO)2(MeCN)4](BF4)2,[Ru2(μ-dppm)2(CO)2(tBuNC)4](PF6)2,[Ru2(μ-dppm)2(CO)2(μ-NO)(μ-Cl)Cl2] (2-8),及[Ru2(μ-dppm)2(CO)2(μ-H)(μ-Cl)Cl2] (2-9)。其中,化合物2-6,2-8,2-9及2-10已使用X光繞射解析其單晶構造。

    Supramolecular cages can be synthesized via symmetry-interaction, directional-bonding, weak-link, and dynamic-self-assembly approaches. Both experimental and theoretical study of a simple dynamic system formed between dicopper complex [Cu2(μ-dppm)2(μ-OAc)]+ and various sigma donors (L; L = py, MeCN, THF, acetone, MeOH) in CH2Cl2 and study of that between dicopper complexes [Cu2(μ-dppm)2(μ-O2CR)]+ and neutral dipyridyl compound (NN, NN = 4,4’-bipyridine (bpy), 1,2-bis(4-pyridyl)ethane (bpa), and trans-1,2-bis(4-pyridyl)ethylene (bpe), and 4,4’-trimethylenedipyridine (tmp)) led us to study dynamic systems between tetracopper complex [{Cu2(μ-dppm)2}2(μ-1,3-C6H4(CO2)2)]2+ andNN (NN = bpa, tmp, bpy), unexpectedly finding that the flexibility of NN can determine the outcome of the dynamic reactions. The flexible NN can convert the tetracopper complex into supramolecular cages, but the rigid NN can convert the complex into a coordination polymer. The dynamic system between tetracopper complex [{Cu2(μ-dppm)2}2(μ-(1,4-C6H4(CO2)2)]2+ andNN (NN = bpa, bpy) can produce a rectangular cationic cage [{(Cu2(μ-dppm)2)2(μ-1,4-C6H4(CO2)2)}2(μ-bpa)2]4+ with an anion (BF4-) inside and three other anions outside. The study finds that the weak electrostatic interactions between the cationic cage and the anion are important in stabilizing the dynamically self-assembled cages.
    Diruthenium carbonyl complexes containing two nitrito and nitrato ligands, [Ru2(μ-CO)2(κ2-(O,O’)-NO2)2(μ-dppm)2] (2-6) and [Ru2(μ-CO)2(κ2-(O,O’)-NO3)2(μ-dppm)2] (2-10), were prepared. Conversion reactions of compound 2-6 into [Ru2(μ-dppm)2(μ-CO)2(MeCN)4](BF4)2, [Ru2(μ-dppm)2(CO)2(tBuNC)4](PF6)2, [Ru2(μ-dppm)2(CO)2(μ-NO)(μ-Cl)Cl2] (2-8), and [Ru2(μ-dppm)2(CO)2(μ-H)(μ-Cl)Cl2] (2-9) were also studied. Crystal structures of compounds 2-6, 2-8, 2-9, and 2-10 were determined by X-ray crystallography.

    Chapter 1. Understanding supramolecular dynamic combinatorial systems formed by diphosphine-bridged dicopper(I) complexes 1 Introduction 1 Applications of supramolecular metallacycles 1 Symmetry-interaction approach 2 Directional-bonding approach 5 Weak-link approach 9 Self-assembly of dynamic cages 10 Cage compounds reported by this laboratory 11 Irreversible self-assembly of supramolecular cages 11 Reversible (dynamic) self-assembly of supramolecular cages 17 Research motivation and plan 25 Experimental section 26 General information 26 X-Ray crystallography 27 Theoretical calculations 29 Results and Discussion 31 About the dynamic system of [Cu2(-dppm)2(-MeCO2)]+ and various sigma donors (L) 31 About the dynamic system of [Cu2(-dppm)2(-MeCO2)]+ and bpy 39 About the dynamic system of [{Cu2(-dppm)2}2(-(1,3-O2CC6H4(CO2)2)](BF4)2 (6(BF4)2) and flexible dipyridyl compounds, 1,2-bis(4-pyridyl)ethane (bpa). 43 About the dynamic system of [{Cu2(-dppm)2}2(-(1,4-O2CC6H4(CO2)2)](BF4)2 (7(BF4)2) and bpa. 46 Conclusions 59 References 62 Chapter 2: Binding and Reactions of Nitrites in Diruthenium(I) Carbonyl Complexes 67 Introduction 67 Sodium nitrite as a chemical substance and uses in human 67 Nitrite in the nitrogen cycle - biological fate of nitrite 68 Coordination modes of nitrite with one transition-metal atom 70 Organometallic chemistry of bound nitrite groups 71 Organic synthesis using nitrite and Pd(II) complexes 72 Nitrite and related compounds reported by this laboratory 74 Motivation of research 75 Experimental section 76 General information 76 Synthesis of [Ru2(-CO)2(2-(O,O’)-NO2)2(-dppm)2] (6) 77 Reaction of [Ru2(-CO)2(2-(O,O’)-NO2)2(-dppm)2] (6) with excess t-BuNC. 85 Reaction of [Ru2(-CO)2(2-(O,O’)-NO2)2(-dppm)2] (6) with excess Et3O+BF4-. 86 Synthesis of [Ru2(-dppm)2(CO)2(-NO)(-Cl)Cl2] (8). 87 Synthesis of [Ru2(-dppm)2(CO)2(-H)(-Cl)Cl2] (9). 93 Synthesis of [Ru2(-CO)2(2-(O,O’)-NO3)2(-dppm)2] (10) 98 X-ray crystallography 102 Results and Discussion 107 Synthesis and Structures of Diruthenium Compounds with two nitrites and nitrates 107 Reactions of Diruthenium Dinitrito Compound (6) 111 Conclusions 116 References 117

    References for chapter 1
    1. Dalgarno, S. J.; Power, N. P.; Atwood, J. L. Coord. Chem. Rev. 2008, 252, 825.
    2. Hof, F.; Craig, S. L.; Nuckools, C.; Rebek, Jr. J. Angew. Chem. Int. Ed. Engl. 2002, 41, 1488.
    3. Inokuma, Y.; Kawano, M.; Fujita, M. Nature Chem. 2011, 3, 349.
    4. Merlau, M. L.; Mejia, S. D. P.; Nguyen, S. T.; Hupp, J. T. Angew. Chem. Int. Ed. 2011, 40, 4239.
    5. Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2005, 38, 351.
    6. Inokuma, Y.; Arail, T.; Fujita, M. Nature Chem. 2010, 2, 780.
    7. Inokuma, Y.; Yoshioka, S.; Ariyoshi, J.; Arai, T.; Takada, K.; Matsunaga, S.; Rissanen, K.; Fujita, M. Nature, 2013, 495, 461.
    8. Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. Science, 2009, 324, 1697.
    9. Kumar, A.; Sun, S.-S.; Lee, A. J. Coord. Chem. Rev. 2008, 252, 922.
    10. Atwood, J. L.; Barbour, L. J.; Dalgarno, S. J.; Hardie, M. J.; Raston, C. L.; Webb, H. R. J. Am. Chem. Soc. 2004, 126, 13170.
    11. Holliday, B. J.; Mirkin, C. A. Angew. Chem. Int. Ed. 2001, 40, 2022.
    12. Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975.
    13. (a) Stricklen, P. M.; Volcko, E. J.; Verkade, J. G. J. Am. Chem. Soc. 1983, 105, 2494. (b) Fujita, M.; Ogura, K. Coord. Chem. Rev. 1996, 148, 249. (c) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853.
    14. Gianneschi, N. C.; Masar III, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825.
    15. Lehn, J.-M. Chem. Eur. J. 1999, 5, 2455.
    16. Corbett. P. T.;; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J.-L.; Sanders, J. K. M.; Otto, S. Chem. Rev. 2006, 106, 3652.
    17. (a) Lehn, J.-M. Chem. Soc. Rev. 2007, 36, 151. (b) Lehn, J.-M. Angew. Chem. Int. Ed. 2013, 52, 2836.
    18. Ladame, S. Org. Biomol. Chem. 2008, 6, 219.
    19. Custelcean, R. Top. Curr. Chem. 2012, 322, 193.
    20. (a) Hasenknopt, B.; Lehn, J.-M.; Kneisel, B. O.; Baum, G.; Fenske, D. Angew. Chem. Int. Ed. Engl. 1996, 35, 1838. (b) Hasenknopt, B.; Lehn, J.-M.; Boumediene, N.; Dupont-Gervais, A.; Dorsselaer, A. V.; Kneisel, B.; Fenske, D. J. Am. Chem. Soc. 1997, 119, 10956.
    21. Campos-Fernandez, C. S.; Schottel, B. L.; Chifotides, H. T.; Bera, J. K.; Basca, J.; Koomen, J. M.; Russell, D. H.; Dunbar, K. R. J. Am. Chem. Soc. 2005, 127, 12909.
    22. (a) Crook, G. R.; Johnson, B. F. G.; Williams, I. G.; Gamlen, G. J. Chem. Soc. A, 1969, 2761. (b) Spohn, M.; Vogt, T.; Strähle, J. Z. Naturforsch, 1986, B41, 1373.
    23. Shiu, K.-B.; Peng, S.-M.; Cheng, M.-C. J. Organomet. Chem. 1993, 452, 143.
    24. Shiu, K.-B.; Lee, H.-C.; Lee, G.-H.; Wang, Y. Organometallics, 2002, 21, 4013.
    25. Shiu, K.-B.; Lee, H.-C.; Lee, G.-H.; Ko, B.-T.; Wang, Y.; Lin, C.-C. Angew. Chem. Int. Ed. Engl. 2003, 42, 2999.
    26. Shiu, K.-B.; Lee, H.-C.; Lee, G.-H. Cryst. Growth Des. 2010, 10, 2083.
    27. Wang, C.-T.; Shiu, L.-C. ; K.-B. Shiu, Chem. Eur. J. 2015, 21, 7026.
    28. Diez, J.; Gamasa, M. P.; Gimeno, J.; Tiripicchio, A.; Camellini, M. T. J. Chem. Soc. Dalton Trans. 1987, 1275.
    29. Diez, J.; Gamasa, P.; Gimeno, J.; Lanfranchi, M.; Tiripicchio, A. J. Chem. Soc. Dalton Trans. 1990, 1027.
    30. Harvey, P. D.; Drouin, H.; Zhang, T. Inorg. Chem. 1997, 36, 4998.
    31. Shiu, K.-B.; Liu, S.-A.; Lee, G.-H. Inorg. Chem. 2010, 49, 9902.
    32. Chuang, Jen-Han, Master Thesis, National Cheng Kung University, July 2012.
    33. Liu, Shih-An, Ph. D. Thesis, National Cheng Kung University, July 2011.
    34. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
    Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
    35. Sheldrick, G. M. SHELXTL-97, University of Göttingen, Göttingen, Germany.
    36. Bondi, A. J. Phys. Chem. 1964, 68, 441.
    37. Jiang, K.; Zhao, D.; Guo, L.-B.; Zhang, C.-J.; Yang, R.-N. Chin. J. Chem. 2004, 22, 1297.
    38. Guo, L.-B.; Zhao, D.; Zheng, X.; Zhang, X.; Yang, R. Russ. J. Inorg. Chem. 2005, 50, 1681.
    39. Bondi, A. J. Phys. Chem. 1964, 68, 441.
    40. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, Wiley, New York, NY, 2000, p. 23.

    References for chapter 2
    1. Binkerd, E. F.; Kolari, O. E. Food Cosmet. Toxicol. 1975, 13, 661.
    2. Pearson, A. M.; Gillett, T. A. (Eds.) Processed Meats, third ed., Chapman & Hall, New York, NY, 1996.
    3. Sincelar, J. J.; Milkowski, A. L. Nitric Oxide, 2012, 26, 259.
    4. http://msds.chem.ox.ac.uk/SO/sodium_nitrite.html.
    5. https://en.wikipedia.org/wiki/Sodium_nitrite.
    6. Hord, N. G.; Tang, Y.; Bryan, N. S. Am. J. Clin. Nutr. 2009, 90, 1.
    7. Hunault, C. C.; van Velzena, A. G.; Sips, A.; Schothorst, R. C.; Meulenbelt, J. Toxidcol. Lett. 2009, 190, 48.
    8. Bryan, N. S.; Calvert, J. W.; Elmod, J. W.; Gundewar, S.; Ji, S. Y.; Lefer, D. J.; Proc. Natl. Acad. Sci. USA, 2007, 104, 19144.
    9. Maia, L. B.; Moura, J. G. Chem. Rev. 2014, 114, 5273.
    10. Hichman, M. A,; Rowbottom, G. L. Coord. Chem. Rev. 1982, 42, 55.
    11. Nakamoto, K. Ed. Infrared and Raman Spectra of Inorganic and Coordination Compounds, fourth ed., John Wiley & Sons, 1986.
    12. (a) Basolo, F.; Hammaker, G. S. Inorg. Chem. 1962, 1, 1. (b) Jackson, E. G.; Lawrance, G. A.; Lay, P. A.; Sargeson, A. M. Inorg. Chem. 1980, 19, 904. (c) Adell, B. Z. Anorg.
    Allgeem. Chem. 1955, 279, 219.
    13. Booth, G.; Chatt, J. J. Chem. Soc. 1962, 2099.
    14. Shiu, K.-B.; Chang, C.-J. J. Organomet. Chem. 1990, 395, C47.
    15. Johnson, B. F. G.; Sieker, A.; Blake, A. J.; Winpenny, R. E. P. J. Organomet. Chem. 1994, 475, 193.
    16. Shiu, K.-B.; Yang, L.-T.; Wei, S.-W.; Li, C.-H.; Wu, R.-R.; Wang, J.-C.; Liou, L.-S.; Chiang, M. Y. Inorg. Chem. 1996, 35, 7845.
    17. Fairlamb, I. J. S. Angew. Chem. Int. Ed. 2015, 54, 10415.
    18. Tamura, M.; Yasui, T. Chem. Commun. 1968, 1209.
    19. (a) Kuznetsova, N. I.; Danilyuk, A. F.; Likholobov, V. A.; Yermakov, Y. I. React. Kinet. Catal. Lett. 1979, 12, 235. (b) Kuznetsova, N. I.; Likholobov, V. A.; Fedotov, M. A.; Yerrnakov, Y. I. J. Chem. Soc. Chem. Commun. 1982, 973.
    20. Shiu, K.-B.; Chang, C.-J. J. Organomet. Chem. 1990, 395, C47.
    21. Caulton, K. G. Coord. Chem. Rev. 1975, 14, 317.
    22. Shiu, K.-B.; Li, C.-H.; Chan, T.-J.; Peng, S.-M.; Cheng, M.-C.; Wang, S.-L; Liao, F.-L.; Chiang, M. Y. Organometallics, 1995, 14, 524.
    23. Shiu, K.-B.; Young, S.-S.; Chen, S.-I; Chen, J.-Y.; Wang, H.-J.; Wang, S.-L.; Liao, F.-L.; Peng, S.-M.; Liu, Y.-H. Organometallics, 1999, 18, 4244.
    24. Gordon, A. J.; Ford, R. A. (Eds.), The Chemist’s Companion, 4th ed.; Wiley: New
    York, 1972.
    25. Sherlock, S. J.; Cowie, M.; Singleton, E.; Steyn, M. M. d. V. Organometallics, 1988, 7, 1663.
    26. Lee, Chun-Yi, Mater Thesis, National Cheng Kung University, January 2017.
    27. (a) Sheldrick, G. M. SHELXL-97, University of Göttingen, Göttingen, Germany. (b) Sheldrick, G. M. Acta Cryst. 2015, C71, 3.
    28. Richter-Addo, G. B.; Legzdins, P. Metal Nitrosyls, Oxford, New York, 1992, p. 64.
    29. https://en.wikipedia.org/wiki/Metal_carbonyl.
    30. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry, Wiley, New York, 2000, p. 23.
    31. Crabtree, R. H. The Organometallic Chemistry of The Transition Metals, 6th ed., Wiley, New York, 2014, p. 40.

    下載圖示 校內:2022-07-04公開
    校外:2022-07-04公開
    QR CODE