| 研究生: |
謝明璋 Hsieh, Ming-Chang |
|---|---|
| 論文名稱: |
傾轉式旋翼機智慧化模式轉換與重組容錯控制 Intelligent Conversion and Reconfiguration of Tiltrotor Aircraft |
| 指導教授: |
陳介力
Chen, Chieh-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 傾轉式旋翼機 、增量式非線性動態反算 、強化學習 、容錯控制 |
| 外文關鍵詞: | Tiltrotor Aircraft, Incremental Nonlinear Dynamic Inversion, Reinforcement Learning, Reconfiguration Control |
| 相關次數: | 點閱:148 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究主要分為兩大部分,傾轉式旋翼機的模式轉換飛行控制與重組容錯控制。其中模式轉換飛行控制部分,本文分別針對傾轉式旋翼機之旋翼機模式與定翼機模式設計高度-姿態控制器與速度-姿態控制器,導入強化學習演算法輔助飛行控制器進行模式轉換過程中短艙傾角(Mast angle)角度輸出的路徑規劃,並對於不同控制器在轉換過程之切換策略深入探討,設計完善的傾轉式旋翼機模式轉換控制策略,最後進行模擬驗證與成果分析。
重組容錯飛行控制部分,本文利用傾轉式旋翼機控制舵面多元的優點進行容錯控制控制器設計,應用增量式非線性動態反算(Incremental nonlinear dynamic inversion)(INDI)計算出升降舵失效下,其餘控制舵面合理的輸出角度以補償造成之影響並維持飛行器姿態穩定,達成基本巡航任務需求,接著探討重組容錯控制器的切換策略,使飛行器在控制器切換過程保持姿態穩定。最後基於所設計之重組容錯控制策略進行不同情境下之模擬飛行,驗證研究成果。
Tiltrotor aircraft has a great development prospect in civil aviation or military field due to the features of vertical lift capability, hovering capability and high cruise speed. To develop an integral control system of tiltrotor, the contents of this paper was mainly divided into two parts, flying control system design of tiltrotor’s flying mode conversion and reconfiguration control system design.
Firstly, the dynamics model of the tiltrotor aircraft was built. Refer to the V-22, this paper constructed a complete mathematical model to prove the control system’s performance. Secondly, the incremental nonlinear dynamic inversion (INDI) control architecture was proposed. Helicopter mode controller and fixed-wing aircraft mode controller were respectively designed to make the tiltrotor accomplish flying missions. After that, the reinforcement learning with deep deterministic policy gradient algorithm was imported to complete the conversion of tiltrotor’s flying mode. Finally, the reconfiguration control system based on the INDI architecture was established. With the multiple control surfaces, this paper enabled the idle control paddle to offset the malfunctional control paddle.
In each part of control systems designed below, this paper planed several scenario simulations to present the performance. The result indicated that the flying control system design of tiltrotor’s flying mode conversion and reconfiguration control system design were feasible.
Alwi, Halim & Edwards, C.. (2008). Fault Detection and Fault-Tolerant Control of a Civil Aircraft Using a Sliding-Mode-Based Scheme. Control Systems Technology, IEEE Transactions on. 16. 499 - 510. 10.1109/TCST.2007.906311.
Buschek, H., Calise, A. J. (1997). Controllers: Mixed and Fixed. Journal of Guidance, Control, and Dynamics, Vol. 20, No. 1, January-February 1997.
Chadli, M. & Aouaouda, Sabrina & Karimic, H.R. & Shi, Peng. (2012). Robust fault tolerant tracking controller design for a VTOL aircraft. Journal of the Franklin Institute. 350. 10.1016/j.jfranklin.2012.09.010.
Ferguson, S. W. (1989). Development and Validation of a Simulation for a Generic Tilt-Rotor Aircraft. NASA Contractor Report, 166537.
Gribble, Jeremy. (1993). Linear quadratic Gaussian/loop transfer recovery design for a helicopter in low-speed flight. Journal of Guidance Control and Dynamics - J GUID CONTROL DYNAM. 16. 754-761. 10.2514/3.21077.
Kleinhesselink, Kristi. (2007). Stability and Control Modeling of Tiltrotor Aircraft. MSc. Thesis, University of Marylanf, USA.
Liao, Fang & Wang, Jian & Yang, Guang-Hong. (2002). Reliable Robust Flight Tracking Control: An Lmi Approach. Control Systems Technology, IEEE Transactions on. 10. 76 - 89. 10.1109/87.974340.
Lillicrap, Timothy & Hunt, Jonathan & Pritzel, Alexander & Heess, Nicolas & Erez, Tom & Tassa, Yuval & Silver, David & Wierstra, Daan. (2015). Continuous control with deep reinforcement learning. Published as a conference paper at ICLR 2016.
Lu, Peng & Van Kampen, Erik-Jan & De Visser, Coen & Chu, Q.. (2016). Aircraft Fault-Tolerant Trajectory Control Using Incremental Nonlinear Dynamic Inversion. Control Engineering Practice. 57. 10.1016/j.conengprac.2016.09.010.
Mahapatra, D. (2013). Control System Design of Tilt Rotor Unmanned Aerial Vehicle (UAV). Degree thesis, National Institute of Technology Rourkela, ODISHA, India.
Mnih, Volodymyr & Kavukcuoglu, Koray & Silver, David & Rusu, Andrei & Veness, Joel & Bellemare, Marc & Graves, Alex & Riedmiller, Martin & Fidjeland, Andreas & Ostrovski, Georg & Petersen, Stig & Beattie, Charles & Sadik, Amir & Antonoglou, Ioannis & King, Helen & Kumaran, Dharshan & Wierstra, Daan & Legg, Shane & Hassabis, Demis. (2015). Human-level control through deep reinforcement learning. Nature. 518. 529-33. 10.1038/nature14236.
Postlethwaite, I. & Smerlas, A. & Walker, Daniel & Gubbels, Arthur & Baillie, S. & Strange, M. & Howitt, J.. (1999). Control of the NRC Bell 205 Fly-by-Wire Helicopter. Journal of The American Helicopter Society - J AMER HELICOPTER SOC. 44. 10.4050/JAHS.44.276.
Prasanth, R. & Mehra, Raman & Bennett, R.. (1999). Active control of aeromechanical instability. 10.2514/6.1999-4222.
Rysdyk, Rolf & Calise, Anthony. (1999). Adaptive Model Inversion Flight Control for Tilt-Rotor Aircraft. Journal of Guidance Control and Dynamics - J GUID CONTROL DYNAM. 22. 10.2514/2.4411.
Simplício, P., Pavel, M. D., Van Kampen, E., & Chu, Q. P. (2013). An acceleration measurements-based approach for helicopter nonlinear flight control using incremental nonlinear dynamic inversion. Control Engineering Practice, 21(8), 1065-1077.
Yuesheng, L., & Xinping, G. (2010). Robust fault-tolerant H 2/H∞ controller design based on state feedback. In 2010 IEEE International Conference on Automation and Logistics (pp. 643-647).
Zhang, Youmin & Jiang, Jin. (2003). Bibliographical review on reconfigurable fault-tolerant control systems. IFAC Proceedings Volumes. 36. 257-268. 10.1016/S1474-6670(17)36503-5.
Lee. (2018). Stability and Hovering Control Modeling of Tiltrotor Aircraft. Thesis, Department of Aeronautics & Astronautics, National Cheng Kung University, Taiwan.