| 研究生: |
李宜澄 Lee, I-Cheng |
|---|---|
| 論文名稱: |
動物性蛋白質產業經營效率之實證分析 An Empirical Analysis of Operational Efficiency in the Animal Protein Industry |
| 指導教授: |
廖麗凱
Liao, Li-Kai 林泰宇 Lin, Tai-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 經營效率 、資料包絡分析法 、全要素效率指標 、動物性蛋白質產業 |
| 外文關鍵詞: | Operational Efficiency, Data Envelopment Analysis, Total-Factor Efficiency Index, Animal Protein Industry |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球人口成長與飲食結構轉型的背景下,動物性蛋白質產業面臨糧食安全與資源限制的挑戰,經營效率成為企業維持韌性與競爭力的關鍵。然而,水產品業、肉品業與乳業之間的效率差異與改善潛能仍缺乏系統性檢視。本研究遂以COVID-19疫情前後為分界,針對2016–2023年間世界基準聯盟(WBA)所列35家跨國上市公司(共280筆年度觀測值),透過資料包絡分析(DEA)結合Range Directional Measure-Directional Distance Function(RDM-DDF)與跨期連結機制,進行多投入、多產出條件下的相對效率評估與結構剖析。研究旨在建構一套量化診斷工具,揭示產業間與企業間的效率差距與驅動因素,並協助經營者辨識資源配置瓶頸,提出策略優化方向。
研究結果顯示,在疫情爆發前,動物性蛋白質產業整體效率呈現穩步提升;然而,COVID-19與大宗原料價格劇烈波動帶來的衝擊,導致後期效率普遍受抑。比較三大子產業,乳業憑藉高度標準化流程與數位化監控展現最強韌性;水產品業受到海洋資源與運輸成本變動影響,後期表現相對弱化;肉品業則顯示出效率分化現象,部分企業透過垂直整合和風險對沖維持競爭力,另有企業因原料依賴度高與技術升級遲滯而陷入效率瓶頸。持續位居效率前緣的企業,共通特徵包括完善的上下游整合、敏捷的數據驅動管理、原料來源多元化及穩健的財務避險策略。
基於上述洞見,本研究提出六項建議:強化標竿學習、聚焦高附加價值領域、加速智能化與自動化投資、建立多元採購及對沖機制、將合規與永續投資與財務回報綁定,以及優化外匯與資本結構管理,並進一步建構DEA儀表板、策略行動矩陣與效率診斷模組,建構「企業自我診斷與行動框架」閉環管理工具,並萃取財務價值創造路徑,以協助企業在資源壓力與永續要求同步升溫的環境下提升經營韌性。
Against the backdrop of global population growth and dietary transition, the animal protein industry faces mounting challenges in food security and resource constraints, making operational efficiency a critical determinant of corporate resilience and competitiveness. Nevertheless, systematic examinations of efficiency disparities and improvement potential across seafood, meat, and dairy sectors remain limited. To address this gap, the present study employs data envelopment analysis (DEA) integrated with the Range Directional Measure–Directional Distance Function (RDM-DDF) and an intertemporal linkage mechanism to assess relative efficiency and conduct structural diagnostics under multi-input and multi-output conditions. The empirical analysis covers 35 multinational publicly listed companies identified by the World Benchmarking Alliance (WBA), yielding 280 firm-year observations spanning 2016–2023, with the COVID-19 pandemic serving as a temporal dividing point. The study aims to develop a quantitative diagnostic tool that uncovers efficiency gaps and driving factors across and within subsectors, thereby enabling managers to identify resource allocation bottlenecks and formulate strategic directions for optimization.
The empirical evidence indicates a steady improvement in sector-wide efficiency prior to the COVID-19 outbreak, followed by a pervasive decline attributable to pandemic-induced disruptions and volatile commodity prices. Comparative results reveal that dairy companies—underpinned by highly standardized processes and digital monitoring—exhibited the greatest resilience. Seafood firms, exposed to fluctuating marine resources and logistics costs, experienced a relative deterioration in performance, while the meat sector displayed pronounced heterogeneity: certain vertically integrated and well-hedged enterprises sustained competitiveness, whereas others, encumbered by raw-material dependence and delayed technological upgrades, faced efficiency bottlenecks. Firms that consistently occupied the efficient frontier shared several traits, including seamless upstream-downstream integration, agile data-driven management, diversified sourcing, and prudent financial hedging.
Drawing on these insights, the study offers six strategic recommendations: (1) institutionalize benchmark learning, (2) concentrate on high value-added niches, (3) accelerate smart and automated investment, (4) diversify procurement and hedging mechanisms, (5) align compliance-driven sustainability expenditures with financial returns, and (6) optimize foreign-exchange and capital-structure management. Collectively, these measures aim to fortify corporate resilience amid tightening resource constraints and escalating sustainability requirements. Beyond these levers, the research develops a DEA dashboard, a strategic action matrix, and an efficiency-diagnostic module into a closed-loop Corporate Self-Diagnosis and Action Framework and distills financial value-creation pathways. Together, the toolkit and recommendations equip firms to convert efficiency analytics into targeted interventions, thereby strengthening operational resilience in the face of mounting resource pressures and increasing sustainability imperatives.
方顯光、余惠芳、白國明(2016)。東協概念食品產業經營績效評估-資料包絡分析法的應用。華人經濟研究,14(1),43–63。https://www.airitilibrary.com/Article/Detail?DocID=17282055-201603-201604080019-201604080019-43-63
李應賢(2018)。台灣上市上櫃食品企業經營效率與市場性效率分析:價值鏈DEA方法之應用[碩士論文。開南大學]。臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/225vbv
劉文斌、左晉瑋、彭克仲(2010)。應用資料包絡分析選擇股票投資標的之研究-以上市食品產業為例。台灣農學會報,11(5),409–428。https://doi.org/10.6730/JAAT.201010_11(5).0001
蘇玕亞(2024)。評估我國食品業上游的上市櫃公司經營效率[碩士論文。國立高雄科技大學]。臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/n495ck
Aigner, D.J., Lovell, C.A.K. and Schmidt, P. (1977) Formulation and Estimation of Stochastic Frontier Production Function Models. Journal of Economics, 6, 21–37. http://dx.doi.org/10.1016/0304-4076(77)90052-5
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078
Charnes, A., Cooper, W.W., and Rhodes, E. (1978). Measuring the efficiency of decision-making units. European Journal of Operational Research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and Undesirable Outputs: A Directional Distance Function Approach. Journal of Environmental Management, 51(3), 229–240.
Coelli, T. J., Rao, D. S. P., O'Donnell, C. J., and Battese, G. E. (2005). An introduction to efficiency and productivity analysis. 2nd ed. New York, NY, United States: Springer. https://doi.org/10.1007/b136381
Emrouznejad, A., & Yang, G.-L. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4–8. https://doi.org/10.1016/j.seps.2017.01.008
FAO. (2024). The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome. https://doi.org/10.4060/cd0683en
FAO. (2024). World food and agriculture – Statistical yearbook 2024. Rome: Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cd2971en
Färe, R., & Grosskopf, S. (2004). Efficiency and productivity: New directions. In: Boston, MA: Kluwer Academic Publishers.
Färe, R., & Grosskopf, S. (2010). Directional distance functions and slacks-based measures of efficiency. European Journal of Operational Research, 200(1), 320–322.
Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253–290. https://doi.org/10.2307/2343100
Fried, Harold O., C. A. Knox Lovell, and Shelton S. Schmidt (eds), The Measurement of Productive Efficiency and Productivity Change (New York, 2008; online edn, Oxford Academic, 1 Jan. 2008). https://doi.org/10.1093/acprof:oso/9780195183528.001.0001
Hu, J.L. and Wang, S.C. (2006) Total-Factor Energy Efficiency of Regions in China. Energy Policy, 34, 3206–3217. https://doi.org/10.1016/j.enpol.2005.06.015
Lin, R., & Chen, Z. (2015). Super-efficiency measurement under variable return to scale: an approach based on a new directional distance function. Journal of the Operational Research Society, 66(9), 1506–1510.
Pham QM & Thu Ho TT (2022). Impacts of factors affecting the business efficiency of seafood companies listed on the stock market of Vietnam. International Journal of Advanced and Applied Sciences, 9(3): 165–171. https://doi.org/10.21833/ijaas.2022.03.019
Pongpanich, R., Peng, K.-C., & Wongchai, A. (2018). The performance measurement and productivity change of agro and food industry in the stock exchange of Thailand. Agricultural Economics – Czech, 64(2), 89–99. https://doi.org/10.17221/15/2016-AGRICECON
Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European journal of operational research, 130(3), 498–509.
Wang, C.-N., Nguyen, T.-L., Dang, T.-T., & Bui, T.-H. (2021). Performance evaluation of fishery enterprises using data envelopment analysis—A Malmquist model. Mathematics, 9(5), 469. https://doi.org/10.3390/math9050469
Yu, M.-M. (2004). Measuring physical efficiency of domestic airports in Taiwan with undesirable outputs and environmental factors. Journal of Air Transport Management, 10(5), 295–303.
校內:2030-08-21公開