簡易檢索 / 詳目顯示

研究生: 黃世銘
Huang, Shih-Ming
論文名稱: 振翅翼流場之數值模擬
Numerical Simulation of Flow over a Flapping Wing
指導教授: 林三益
Lin, San-Yih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 92
中文關鍵詞: 振翅翼振翅頻率有限體積法
外文關鍵詞: flapping wing, finite-volume scheme, flapping frequency
相關次數: 點閱:83下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文乃利用數值方法模擬分析振翅翼之流場。數值方法是以有限體積法來求解尤拉方程式(Euler equations)與威爾史托克方程式(Navier-Stokes equations),方程式中的對流項是以有限體積法採用三階上風外插與限制函數來計算,黏滯項則採用二階的有限體積法。時間的積分則採用DDADI數值法來處理。此外,為了加速數值上的收斂性,此數值算則引入隱式殘值平滑法,此上風數值方法為一MUSCL型式之算則。對於較高雷諾數的流場而言,則採用Boldwin-Lomax代數紊流模式來求解。
      對於研究振翅翼的空氣動力特性,吾人選定NACA 2412 airfoil,針對二維/三維的振翅運動及黏性/非黏性的流場及不同的振翅頻率、不同的流場攻角、不同的俯仰角(Pitching Angle)、不同的相移位角(Phase Shift)、不同的翅膀形狀來研究與分析。結果得知在振翅頻率K=0.2時效率最好。此外梯形翼的效率比直角翼好,若將梯形翼往前掠將會得到更好的飛行效率。

      A numerical method is developed to study the flapping wing flowfields. The method uses finite-volume method to solve the Euler/Navier-Stokes equations. It uses a third-order upwind finite-volume scheme for discretizing the convective terms and a second-order central finite-volume scheme for discretizing the viscous terms. A diagonal dominant alternating direction implicit scheme (DDADI) coupling with an implicit residual smoothing is used for the time integration to achieve fast convergence of the proposed scheme. The upwind scheme is a MUSCL-type scheme. The Baldwin-Lomax algebra turbulence model is applied to calculate the turbulent flows at high Reynolds numbers.
      For aerodynamic performances of the flapping wings. The NACA2412 airfoil is chosen for studing. Quantitative understanding the effects of the two dimension/three dimension, viscous flow/invicid flow, flapping frequency, mean angle of attack, pitching angle, phase shift and wing shape are calculated. There is a better propulsion efficiency at reduce frequency of K=0.2. Trapezoidal wing has a better propulsion efficiency than Rectangular wing. If swept angle of trapezoidal wing is negative, the propulsion efficiency is increasing.

    中文摘要.......................I 英文摘要.......................II 誌 謝.......................III 目 錄.......................IV 圖表目錄.......................VI 符號說明.......................Ⅸ 第一章 緒 論......................1 第二章 數值方法....................5 2.1統御方程式......................5 2.2空間差分........................7 2.3時間積分.......................10 2.4 DDADI數值法...................11 2.5邊界條件.......................13 2.6數值方法加速收斂...............14 2.7收斂標準.......................14 2.8紊流模式.......................15 2.9動態格點系統...................17 第三章 二維數值結果與討論.........18 3.1簡介...........................18 3.2 上下振盪的NACA2412 airfoil....20 3.3 上下振盪並藕合俯仰運動........30 第四章 三維數值結果與討論.........33 第五章 結論.......................37 參考文獻..........................39 表................................43 圖................................47 自述..............................91 著作權聲明........................92

    參 考 文 獻
    1.Baldwin, B. S. and Lomax, H., “Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flow,” AIAA Paper 78-0527,1978.
    2.DeLaurier, J. D., ” An Aerodynamic Model for Flapping Wing Flight,” Aeronautical Journal, pp. 125-130, April, 1993.
    3.Hall , K. C. and Hall, S. R., “Minimum Induced Power Requirements for Flapping Flight,” J. F. M., 323, pp. 285-315, 1996.
    4.Hall, K. C. and Pigott, S. A., “Power requirements for Large-Amplitude Flapping Flight,” Journal of Aircraft, Vol. 35, No. 3, pp. 352-361, May-June, 1998.
    5.http://www.catskill .net/evolution/flight/birdsfly/birdsfly.htm
    6.Jones, K. D., Dohring, C.M. and Platzer, M.F., "An Experimental and Computational Investigation Of the Knoller-Betz Effect," AIAA Journal, Vol. 36, No. 7, pp. 1240-1246, 1998.
    7.Jones, K. D., and Plartzer, M. F., “Numerical Compilation of Flapping-Wing Propulsion and Power Extraction”, AIAA Paper 97-0826, 1997
    8.Jones, K. D., B., M., Mahmoud, O., Pollard, S. J., Platzer, M. F., “Numerical and Experimental Investigation of Flapping-Wing Propulsion in Ground Effect,” AIAA Paper, 2002-0866, 2002.
    9.Jones, K. D., Castro, B., M., Mahmoud, O., Pollard, S. J., Platzer, M. F., Neff, M. F., Gonet, K. and Hummel, D., “A collaborative Numerical and Experimental Investigation of Flapping-Wing Propulsion,” AIAA Paper 2002-0706 , 2002.
    10.Jones, K. D., Dohring, C. M. and Plartzer, M. F., “Wake Structures behind plunging Airfoils: A Comparison of numerical and Experimental Results”, AIAA Paper 96-0078, 1998.
    11.Jones, K. D., Duggan, S. J. and Plartzer, M. F., “Flapping-Wing propulsion For a Micro Air Vehicle,” AIAA Paper, 2001-0126, 2001.
    12.Jones, K. D., Lai, J. C. S., Tuncer, I. H. and Plartzer, M. F., “Computational and Experimental Investigation of Flapping-Foil propulsion”, 1st International Symposium on Aqua Bio-Mechanisms / International Seminar on Aqua Bio-Mechanisms, Tokai University Pacific Center, Honolulu, Hawaii, August 27-30, 2000.
    14.Kamakoti, R., Berg, M., Ljungqvist, D. and Shyy, W., “a computational Study for Biological Flapping Wing Flight,” Transactions of the Aeronautical Society of the Republic of China, Vol. 32, No. 4, pp.265-279, 2000.
    16.Klopfer, G. H., Hung, C. M., Van der Wijngaart, R. F., and Onufer J. T., “A Diagonalized Diagonal Dominant Scheme and Subiteration Correction,”, AIAA paper 98-2824, 1998.
    17.Lai, J. C. S., Platzer, M. F., “Jet Characteristics of a Plunging Airfoil,” AIAA Journal, Vol. 37, No. 12, pp1529-1537, December, 1999.
    18.Lighthill, Sir, J., “The Inaugural Goldstein Memorial Lecture-Some Challenging New Applications for Basic Mathematical Methods in the Mechanics of Fluids that were Originally Pursued with Aeronautical Aims,” Aeronautical Journal, pp.41-52, February, 1990.
    19.Liu, H. and Kawachi, K., “A Numerical Study of Insect Flight,” Journal of Computational Physics, Vol. 146, pp.124-156, 1998.
    20.Neff, M. F., and Hummel, D., “Euler Solutions for A Finite-Span Flapping Wing,” Conference on Fixed, Flapping and Rotary Wing Vehicles at very low Reynolds Numbers,. 5th-7th, 2000.
    21.Osher, S. and Chakraverthy, S., “Very High Order Accurate TVD Schemes,” ICASE Report No. 84-44 1984, 1985.
    22.Platzer, M. F., and Jones, K. D., ”The Unsteady Aerodynamics of Flapping-Foil Propellers,” 9th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Ecole Centrale de Lyon, Lyon, France, September 4-8, 2000.
    23.Ramamurti, R. and Sandberg, W., “Computational Study of 3-D Flapping Foil Flows,” AIAA Paper2001-605, 2001.
    24.Ramamurti, R. and Sandberg, W., “Simulation of Flow About Flapping Airfoils Using Finite Element Incompressible Flow Solver,” AIAA Journal, Vol. 39, No. 2, pp. 253-260, February, 2001.
    25.Rayner, J. M. V., and Goedon, R., “Visualization and Modelling of the Wakes of Flying Birds,” In: Biona Report. 13, Motion Systems ed. R. Blickham, A. Wisser & W. Nachtigall. Jena: Gustav Fischer Verlag pp.165-73. BWEB:R42171,1997.
    26.Roe, P. L., “Approximate Riemann Solver, Parameter Vector and Difference Shceme.” Journal of Computation Physics, Vol. 43, No. 2, 1981
    27.Shyy, W., Berg, M. and Ljungqvist, D., ” Flapping and Flexible Wings for Biological and Micro Air Vehicles,” Progress in Aerospace Science, Vol. 35, pp. 455-505, 1999.
    28.Smith, M. J. C., ” Simulating Moth Wing Aerodynamics: Towards the Development of Flapping-Wing Technology,” AIAA Journal, Vol. 34, No. 7, pp. 1348-1355, 1996.
    29.Thibert, J. J., Granjacques, M. and Ohman, L. H., “NACA0012 Airfoil, AGARD Advisory Report No.138, Experimental Data Base for Computer Program Assessment,” pp. A1-9, 1979
    30.Tuncer, I. H., and Platzer, M. F., “Thrust Generation due to airfoil Flapping,” AIAA Journal, Vol. 34, No. 2, pp.324-331, February, 1996.
    31.Vext, N. S., “Unsteady Aerodynamic Model of Flapping Wings,” AIAA Journal, Vol. 34, pp. 1435, 1996.
    32.胡舉軍,“旋翼與振翅翼之數值研究”成功大學航太所博士論文,2002年12月
    33.余重信,“有限體積法模擬不可壓縮之內外流場”成功大學航太所博士論文,2000年1月.
    34.吳村木,“以有限體積法探討流經圓柱渦漩曳放的壓抑現象”成功大學航太所博士論文,1993年

    下載圖示 校內:立即公開
    校外:2004-07-07公開
    QR CODE