簡易檢索 / 詳目顯示

研究生: 賴柏翰
LaI, Bo-Han
論文名稱: MTi2(PO4)3 (M=Na, K, Rb) 之晶體結構與離子導電率探討
Crystal Structure and Ionic Conductivity of MTi2(PO4)3 (M=Na, K, Rb)
指導教授: 黃啓原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 113
中文關鍵詞: NASICON高溫二維XRD離子通道離子導電率
外文關鍵詞: NASICON, High Temperature 2D X-ray Diffractometer, ion channel, ionic conductivity
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • NASICON (sodium super ionic conductor) 化合物為開放性網狀結構,離子會經由氧離子組成之瓶頸 (bottleneck) 進行穿梭產生電性是具有潛力之離子導體。本研究使用固相反應法進行合成,並透過多階段煅燒條件230℃/3 h-630℃/4 h-900℃/12 h 進行煅燒可合成出接近單一相之NaTi2(PO4)3、KTi2(PO4)3、RbTi2(PO4)3與Rb0.8 Na0.2Ti2(PO4)3 粉末,及Na0.5K0.5Ti2(PO4)3以兩相組成之部分固溶體,透過高溫二維XRD進行升溫後之分析 (RT、150℃、300℃、500℃),引用無機晶體結構資料庫 (ICSD) MTi2(PO4)3 (M=Na, K, Rb)作為標準檔,並配合GSAS之Rietveld refinement晶格常數精算與Diamond軟體進行繪圖計算離子通道中三角形及內切圓瓶頸面積。Na0.5K0.5Ti2(PO4)3 此成份透過兩相進行擬合,推測更貼近實際其況,其中phase 1之鈉鉀比例約在1:9,phase 2則在6:4左右,以這兩結果進行合成,可合成出接近單一相之粉末。煅燒粉末加入2 wt% MgO進行球磨造粒與壓胚,並於1100℃/12 h進行燒結,皆可使燒結相對密度達90%以上,最終會以直流電進行導電率之量測,其中以NaTi2(PO4)3擁有最好的導電率,隨溫度升時MTi2(PO4)3 (M=Na, K, Rb0.8Na0.2, Rb) 之所有成份其瓶頸面積與導電率都有上升之情況呈現正相關,MTi2(PO4)3 (M=Na, K, Rb0.8Na0.2, Rb) 中當置換之離子尺寸愈大時,瓶頸面積會上升但導電率反而下降呈現負相關。

    NASICON is a sodium superionic conductor that is an oxide material with high ion conductivity. Sodium ions move in elastic network three-dimensional structural channels to generate electricity, and the channel can be called bottleneck. The study uses the solid-state reaction method for synthesis. The XRD pattern showed that nearly a single phase could be obtained for NaTi2(PO4)3、KTi2(PO4)3、RbTi2(PO4)3、Rb0.8 Na0.2Ti2(PO4)3 and partial solid-solution could be obtained for Na0.5K0.5Ti2(PO4)3 through calcined at more stage 230℃/3 h-630℃/4 h-900℃/12 h. Through high temperature XRD for phase identification after heating up and Rietveld crystal structure actuarial calculations, the crystal structure changes after heating up. Diamond drawing software calculates the area size of the triangle and inscribed circle in the bottleneck. On the other hand, Na0.5K0.5Ti2(PO4)3 ingredient is fitted by using two phases. The sodium-potassium ratio of phase 1 is about 1:9, and phase 2 is about 6:4. The XRD pattern showed that nearly a single phase. Calcination powder was sintered at 1100℃/12 h contains 2wt% MgO to obtain a relative density > 90%. The electrical conductivity of the ceramic body is measured with direct current analysis, and NaTi2(PO4)3 has the best conductivity. When the temperature rises, the conductivity of all ingredients increases, and the bottleneck area rises. The ionic conductivity in room temperature of MTi2(PO4)3 (M=Na, K, Rb0.8Na0.2, Rb) is negatively related to the bottleneck size.

    摘要 I 英文摘要 II 致謝 XI 目錄 XII 表目錄 XV 圖目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與方向 2 1-3 研究目的 4 第二章 文獻回顧與理論基礎 6 2-1 NZP型材料介紹 6 2-2 NZP型材料晶體結構之探討 6 2-3 NZP型材料之離子參雜與取代 10 2-4 NaTi2(PO4)3化合物介紹 11 2-5 NASICON 材料之離子通道 12 2-6 NASICON 材料之晶體結構變化 16 2-7 NASICON 材料粉末製備 18 2-8 液相燒結理論 19 第三章 實驗方法與分析 20 3-1 粉末製備與分析 20 3-1-1 起始原料製備 20 3-1-2 粉末製備 22 3-1-3 流程圖 23 3-2 煅燒粉末之流程 24 3-2-1 粉末之熱差/熱重分析 24 3-2-2 煅燒粉末之製備 24 3-3 煅燒粉末分析 25 3-3-1 X光繞射分析 25 3-3-2 掃描式電子顯微鏡 26 3-3-3 生胚製備與燒結助劑的添加 27 3-4 燒結體之製備 27 3-4-1 阿基米德密度量測 27 3-4-2 掃描式電子顯微鏡 28 3-4-3 導電率量測 28 3-5 晶體結構數據分析 29 3-5-1 數據來源 29 3-5-2 離子通道之瓶頸面積計算 31 第四章 結果與討論 34 4-1 晶體結構分析 34 4-1-1 鹼金族NZP型材料 34 4-1-2 升溫之晶體結構 41 4-1-3 瓶頸面積計算與探討 46 4-2 粉末之合成 56 4-2-1 DTA/TG 分析 57 4-2-2 煅燒條件之分析 58 4-2-3 高溫二維XRD分析 61 4-2-4 Rietveld refinement 70 4-2-5 升溫後瓶頸面積之探討 90 4-3 燒結體分析 98 4-3-1 相對密度分析 98 4-3-2 燒結體之微結構分析 99 4-4 瓶頸面積與導電率之探討 102 4-4-1 導電率之探討 102 4-4-2 導電率與瓶頸尺寸關係 104 第五章 結論 109 參考文獻 110

    [1] A. K. Sethi, Count Alessandro Giuseppe Antonio Anastasio Volta, New York: Palgrave Macmillan, 2016.
    [2] 劉如熹, 仝梓正, 廖譽凱, and 胡淑芬, “108年度諾貝爾化學獎與鋰離子電池之發明,” Physical Bimonthly, 2020.
    [3] J. B. Goodenough, H.-P. Hong, and J. Kafalas, “Fast Na+-ion Transport in Skeleton Structures,” Materials Research Bulletin, vol. 11, no. 2, pp. 203-220, 1976.
    [4] C. Delmas, A. Nadiri, and J. Soubeyroux, “The Nasicon-Type Titanium Phosphates ATi2(PO4)3 (A= Li, Na) as Electrode Materials,” Solid State Ionics, vol. 28, pp. 419-423, 1988.
    [5] F. Mouahid, M. Bettach, M. Zahir, P. Maldonado-Manso, S. Bruque, E. Losilla, and M. Aranda, “Crystal Chemistry and Ion Conductivity of the Na1+ xTi2− xAlx(PO4)3 (0≤ x≤ 0.9) NASICON Series,” Journal of Materials Chemistry, vol. 10, no. 12, pp. 2748-2757, 2000.
    [6] N. Anantharamulu, K. K. Rao, G. Rambabu, B. V. Kumar, V. Radha, and M. Vithal, “A Wide-Ranging Review on Nasicon Type Materials,” Journal of Materials Science, vol. 46, no. 9, pp. 2821-2837, May, 2011.
    [7] M. Guin, and F. Tietz, “Survey of the Transport Properties of Sodium Superionic Conductor Materials for Use in Sodium Batteries,” Journal of Power Sources, vol. 273, pp. 1056-1064, 2015.
    [8] V. Pet’kov, A. Shipilov, and M. Sukhanov, “Thermal Expansion of MZr2(AsO4)3 and MZr2(TO4)x(PO4)3–x (M= Li, Na, K, Rb, Cs; T= As, V),” Inorganic Materials, vol. 51, no. 11, pp. 1079-1085, 2015.
    [9] Q. Ma, M. Guin, S. Naqash, C.-L. Tsai, F. Tietz, and O. Guillon, “Scandium-Substituted Na3Zr2(SiO4)2(PO4) Prepared by a Solution-Assisted Solid-State Reaction Method as Sodium-Ion Conductors,” Chemistry of Materials, vol. 28, no. 13, pp. 4821-4828, 2016.
    [10] X. Lu, S. Wang, R. Xiao, S. Shi, H. Li, and L. Chen, “First-Principles Insight into the Structural Fundamental of Super Ionic Conducting in NASICON MTi2(PO4)3 (M= Li, Na) Materials for Rechargeable Batteries,” Nano Energy, vol. 41, pp. 626-633, 2017.
    [11] F. Zheng, M. Kotobuki, S. Song, M. O. Lai, and L. Lu, “Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries,” Journal of Power Sources, vol. 389, pp. 198-213, 2018.
    [12] M. G. Wu, W. Ni, J. Hu, and J. M. Ma, “NASICON-Structured NaTi2(PO4)3 for Sustainable Energy Storage,” Nano-Micro Letters, vol. 11, no. 1, pp. 36, May, 2019.
    [13] R. Rajagopalan, Z. N. Zhang, Y. G. Tang, C. K. Jia, X. B. Ji, and H. Y. Wang, “Understanding Crystal Structures, Ion Diffusion Mechanisms and Sodium Storage Behaviors of NASICON Material,” Energy Storage Materials, vol. 34, pp. 171-193, Jan, 2021.
    [14] B. Singh, Z. Wang, S. Park, G. S. Gautam, J.-N. Chotard, L. Croguennec, D. Carlier, A. K. Cheetham, C. Masquelier, and P. Canepa, “A Chemical Map of NASICON Electrode Materials for Sodium-Ion Batteries,” Journal of Materials Chemistry A, vol. 9, no. 1, pp. 281-292, 2021.
    [15] N. Tolganbek, Y. Yerkinbekova, A. Khairullin, Z. Bakenov, K. Kanamura, and A. Mentbayeva, “Enhancing Purity and Ionic Conductivity of NASICON-Typed Li1. 3Al0. 3Ti1. 7(PO4)3 Solid Electrolyte,” Ceramics International, vol. 47, no. 13, pp. 18188-18195, 2021.
    [16] W. Hou, X. Guo, X. Shen, K. Amine, H. Yu, and J. Lu, “Solid Electrolytes and Interfaces in All-Solid-State Sodium Batteries: Progress and Perspective,” Nano Energy, vol. 52, pp. 279-291, 2018.
    [17] H.-P. Hong, “Crystal Structures and Crystal Chemistry in the System Na1+ xZr2SixP3− xO12,” Materials Research Bulletin, vol. 11, no. 2, pp. 173-182, 1976.
    [18] J. Alamo, and R. Roy, “Crystal Chemistry of the NaZr2 (PO4)3, NZP or CTP, Structure Family,” Journal of Materials Science, vol. 21, no. 2, pp. 444-450, 1986.
    [19] J. Alamo, and R. Roy, “Crystal Chemistry of the NaZr2(PO4)3, NZP or CTP, Structure Family,” Journal of Materials Science, vol. 21, no. 2, pp. 444-450, 1986.
    [20] C.-Y. Huang, Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure-Type Materials: The Pennsylvania State University, 1990.
    [21] P. Maldonado-Manso, M. A. Aranda, S. Bruque, J. Sanz, and E. R. Losilla, “Nominal vs. Actual Stoichiometries in Al-Doped NASICONs: A Study of the Na1. 4Al0. 4M1. 6(PO4)3 (M= Ge, Sn, Ti, Hf, Zr) Family,” Solid State Ionics, vol. 176, no. 17-18, pp. 1613-1625, 2005.
    [22] S.-q. Yang, H.-x. Wei, L.-b. Tang, C. Yan, J.-h. Li, Z.-j. He, Y.-j. Li, J.-c. Zheng, J. Mao, and K. Dai, “Fast Li-Ion Conductor Li1+yTi2-yAly(PO4)3 Modified Li1. 2[Mn0. 54Ni0.13Co0.13]O2 as High Performance Cathode Material for Li-Ion Battery,” Ceramics International, vol. 47, no. 13, pp. 18397-18404, 2021.
    [23] C. Delmas, F. Cherkaoui, A. Nadiri, and P. Hagenmuller, “A Nasicon-Type Phase as Intercalation Electrode: NaTi2(PO4)3,” Materials Research Bulletin, vol. 22, no. 5, pp. 631-639, 1987.
    [24] D. T. Qui, J. Capponi, M. Gondrand, M. Saib, J. Joubert, and R. Shannon, “Thermal Expansion of the Framework in Nasicon-Type Structure and its Relation to Na+ Mobility,” Solid State Ionics, vol. 3, pp. 219-222, 1981.
    [25] H. Kohler, and H. Schulz, “Single Crystal Investigations on NASICON Na/1+ z/Zr/2− y/Si/x/P/3− x/0/12/; 0≤ y≤ 3/4, 0≤ z≤ 0 Comparison of the Compounds x= 1.24 and x= 3,” Solid State Ionics, vol. 9, pp. 795-798, 1983.
    [26] Z. Zhang, Z. Zou, K. Kaup, R. Xiao, S. Shi, M. Avdeev, Y. S. Hu, D. Wang, B. He, and H. Li, “Correlated Migration Invokes Higher Na+‐Ion Conductivity in NASICON‐Type Solid Electrolytes,” Advanced Energy Materials, vol. 9, no. 42, pp. 1902373, 2019.
    [27] P. Yadav, and M. Bhatnagar, “Structural Studies of NASICON Material of Different Compositions by Sol–Gel Method,” Ceramics International, vol. 38, no. 2, pp. 1731-1735, 2012.
    [28] Z. Zou, N. Ma, A. Wang, Y. Ran, T. Song, Y. Jiao, J. Liu, H. Zhou, W. Shi, and B. He, “Relationships Between Na+ Distribution, Concerted Migration, and Diffusion Properties in Rhombohedral NASICON,” Advanced Energy Materials, vol. 10, no. 30, pp. 2001486, 2020.
    [29] Е. А. Асабина, “Синтез, строение и свойства каркасных фосфатов щелочных металлов, d-переходных металлов IV группы и железа,” Нижегородский государственный университет им. НИ Лобачевского, 2006.
    [30] A. Ignaszak, P. Pasierb, R. Gajerski, and S. Komornicki, “Synthesis and Properties of Nasicon-Type Materials,” Thermochimica Acta, vol. 426, no. 1-2, pp. 7-14, 2005.
    [31] J. Boilot, J. Salanie, G. Desplanches, and D. Le Potier, “Phase Transformation in Na1+ xSixZr2P3− xO12 Compounds,” Materials Research Bulletin, vol. 14, no. 11, pp. 1469-1477, 1979.
    [32] S. Naqash, Q. Ma, F. Tietz, and O. Guillon, “Na3Zr2(SiO4)2(PO4) Prepared by a Solution-Assisted Solid State Reaction,” Solid State Ionics, vol. 302, pp. 83-91, 2017.
    [33] M. L. Di Vona, E. Traversa, and S. Licoccia, “Nonhydrolytic Synthesis of NASICON of Composition Na3Zr2Si2PO12: A Spectroscopic Study,” Chemistry of Materials, vol. 13, no. 1, pp. 141-144, 2000.
    [34] D. Agrawal, and V. S. Stubican, “Synthesis and Sintering of Ca0. 5Zr2P3O12-a Low Thermal Expansion Material,” Materials Research Bulletin, vol. 20, no. 2, pp. 99-106, 1985.
    [35] 陳清典, “MTi4P6O24 (M=Ba,Sr) 的合成、燒結與其熱膨脹及介電性質,” 資源工程學系碩博士班, 國立成功大學, 台南市, 2003.
    [36] 沈志穎, “氧化鋁添加劑對 LiTi2(PO4)3 離子導體相穩定性及導電性質之影響,” 材料科學及工程學系碩博士班, 國立成功大學, 台南市, 2011.
    [37] A. Aatiq, M. Ménétrier, L. Croguennec, E. Suard, and C. Delmas, “On the Structure of Li3Ti2(PO4)3,” Journal of Materials Chemistry, vol. 12, no. 10, pp. 2971-2978, 2002.
    [38] A. Linden, "Acta Crystallographica Section C in 2012," International Union of Crystallography, 2012.
    [39] E. Asabina, V. Pet’kov, M. Boguslavskii, A. Malakho, and B. Lazoryak, “Phase Formation, Crystal Structure, and Electrical Conductivity of Triple Phosphates of Alkali Metals and Titanium,” Russian Journal of Inorganic Chemistry, vol. 51, no. 8, pp. 1167-1175, 2006.
    [40] J. Rodrigo, P. Carrasco, and J. Alamo, “Thermal expansion of NaTi2 (PO4) 3 studied by Rietveld method from X-ray diffraction data,” Materials Research Bulletin, vol. 24, no. 5, pp. 611-618, 1989.
    [41] 黃詩涵, “以液相輔助固相反應法製備鋯磷矽酸鈉之離子導體及其阻抗分析,” 資源工程學系, 國立成功大學, 台南市, 2019.
    [42] 林佳慧, “NASICON化合物中MZr2(PO4)3 (M=Li, Na, K, Cs)之晶體結構與離子導電率,” 資源工程學系, 國立成功大學, 台南市, 2020.

    無法下載圖示 校內:2026-08-20公開
    校外:2026-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE