簡易檢索 / 詳目顯示

研究生: 謝嘉浤
Hsieh, Chia-Hung
論文名稱: 藍姆波結構健康監測系統於單剪力金屬搭接結構及複合材料補片修補金屬裂紋結構之應用
Applications of Lamb Wave Based Structural Health Monitoring System to Metallic Single Shear Lap Joint Structures and Cracked Metallic Structures with Composite Bonded Repair
指導教授: 陳重德
Chen, Chung-De
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 111
中文關鍵詞: 結構健康監測藍姆波頻散曲線疲勞裂紋單剪力搭接金屬結構複材補片修補結構
外文關鍵詞: Structural Health Monitoring, Lamb wave, dispersion curve, fatigue crack, Single Shear Lap Joint Structures, Cracked Metallic Structures with Composite
相關次數: 點閱:148下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結構健康監測技術(Structural Health Monitoring, SHM)之目的為早期預警,結構損傷的擴大前及時發現並進行修補作業,避免造成結構的失效,甚至生命財產的損失。本研究使用的結構健康監測設備為SMART Layer®系統,使用PZT傳感器將系統輸入的電壓訊號利用壓電效應轉換,產生的應力波在結構中傳遞一段距離後,於平板中形成藍姆波(Lamb wave),再由傳感器接收,將接收的訊號進行處理,分析基線訊號(Baseline signal)與量測訊號的變化,並以損傷指數(Damage Index, DI)量化,判斷結構健康狀況。
    根據頻散曲線圖(Dispersion curve),不同的激發頻率下會產生各種藍姆波模態,而藍姆波的基本模態(S0 mode和A0 mode)常用於結構健康監測的損傷判斷。根據材料性質,推導等向性材料與非等向性材料的藍姆波特徵方程式並求得頻散曲線圖,並與藍姆波頻散曲線計算軟體(GUIGUW)驗證。根據感測器設置距離除以理論群速度獲得包波抵達時間(TOF),將電磁干擾訊號(EMI)與藍姆波高模態一同繪製成TOF圖,使作業人員判斷此結構的最佳檢測激發頻率區間。
    在實驗之前,本研究以有限元素模型分析單剪力金屬搭接結構與複材補片修補結構,判斷主要破壞區域和計算各種裂紋長度下的應力集中因子,並針對此區域設置SMART Layer®感測器,再進行疲勞拉伸實驗,根據疲勞裂紋發生路徑進行藍姆波訊號分析,若檢測路徑上有缺陷區存在,會使訊號的S0模態能量的衰減 (Voltage下降)。
    傳統DI值計算方式,會因訊號相位差的現象,造成DI值異常增大,誤判結構損傷位置,且相位差現象的主因並非由結構中裂紋引起,另外三個單剪力金屬搭接結構試件斷裂前的DI值差異很大,導致難有一個基準值表示結構處於危險狀態。對於較複雜的結構監測,本研究發展出一種穩定偵測裂紋的計算方式−HTB-DI值,並設置一個損傷警告值判定結構健康狀況。單剪力金屬搭接結構與複材補片修補結構的HTB-DI最高值皆對應試件的最大損傷(裂紋)處,於較早的拉伸週期時皆高於結構警告值(0.25),達到早期預警目的,並於斷裂前高過結構危險值(0.5),證實HTB-DI值能反映出結構中的損傷位置與損壞程度。
    單剪力金屬搭接結構僅由扣件扭力上磅組合而成,非以用膠黏合兩材料,使得該結構之理論群速度不能以單層或雙層概之,但依據藍姆波特性,激發頻率越高,該結構群速度會越接近單層理論。
    複材補片修補結構分析路徑因感測器黏貼方式分為兩種,一種感測器邊界條件較為單純的金屬面路徑;另一種為感測器的PZT振動端朝向金屬板面黏貼後,再將複材補片黏貼進行結構修補,稱為複材金屬夾層路徑,此黏貼方式使能量相對較集中於金屬板傳遞,若金屬結構疲勞裂紋繼續成長,與金屬面路徑相比,複材與金屬夾層路徑的HTB-DI值會較高,但會因補片與金屬黏合的好壞而有激發頻率的選用限制。

    Structural Health Monitoring (SHM) aims at early warning that the damages in structures. When damage is found in the structure, maintenance staff repair before the expansion of structural damage. It can avoid structural failure, which may cause loss of life and property. In this study, the structural health monitoring equipment used is SMART Layer® system. In the system, the PZT sensor is used to convert the voltage signal into stress wave by the piezoelectric effect. Stress waves turn into Lamb waves after a distance propagation in the plate, and then received by the sensor. The received signal is analyzed, and then compare differences of baseline signal and measurement signal. The damage index (DI) is quantified the signal differences to determine the health status of the structure.
    According to the Lamb wave dispersion curve, various Lamb wave modes will be generated from different excitation frequencies, and the Lamb wave basic modes (S0 mode and A0 mode) are commonly used for damage judgment of structural health monitoring. The Lamb wave characteristic equation of isotropic and non-isotropic materials is derived, and then obtain the dispersion curves which are verified by the calculation software of Lamb wave dispersion curve (GUIGUW). The packet arrival time is obtained by dividing the distance of the sensors by the theoretical group velocity. Draw the arrival time of electromagnetic interference signal together with the arrival time of Lamb wave modes into TOF diagram, which help the operators to determine the optimal detection excitation frequency range of this structure.
    Before the experiment, this study carried out finite element model analysis on single shear metal lap structure and composite patch repair structure for the purposes of judgment of main failure zone and calculation of stress concentration factor under various crack lengths. Installing sensors in this zone and making the fatigue tensile test of specimens.
    Lamb wave signal analysis is carried out according to the fatigue crack occurrence path. If there is a defect area on the detection path, the Lamb wave S0 mode energy of the signal will be attenuated (voltage attenuation).
    The traditional DI value calculation method cause the abnormal increase of value due to the phenomenon of signal phase difference which mainly is not caused by crack damage. Finally lead to misjudgment of the location of structural damage. Another question is that the traditional DI values of the single shear lap structures are quite different before fracture, which makes it difficult to judge whether the structure is in a dangerous state.
    For complex structures, more rigorous calculation methods are required. This study research and develop a calculation method - HTB-DI value for detection of cracks. The maximum HTB-DI value of single shear metal lap structure and composite patch repair structure is corresponding to the maximum damage (crack) of the specimens. The value of HTB-DI is higher than the structural warning value (0.25) in the early tensile cycle, which achieves the purpose of early warning, and continues to be higher than the structural risk value (0.5) before fracture. It is confirmed that HTB-DI value can be used to detect the damage location and damage degree in the structure.
    The single shear lap joint structure only uses bolts to combine two materials without using glue. It makes the theoretical group velocity of this structure neither single-layer nor double-layer. However, according to the Lamb wave characteristics, the higher the excitation frequency, the closer the group velocity of the structure to the single-layer theory.
    The analysis path of racked metal structure with composite bonding repair can be divided into two types according to the adhesive way of sensor. One is the metal side path with simple boundary condition of sensor. Another is the composite metal sandwich path, that the sensor is embedded between the composite material and the metal. The composite metal sandwich path's transducers stick to the metal surface to make the energy relatively concentrated on the metal plate. If the fatigue crack of the metal structure continues to increase, compared with the metal surface path, the HTB-DI value of the composite metal sandwich path will be higher, but the selection of excitation frequency will be limited due to the degree of bonding between the patch and the metal.

    摘要 I Extend Abstract III 致謝XVI 目錄 XVII 表目錄 XX 圖目錄 XXI 符號說明 XXV 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.2.1 結構健康監測發展與相關技術介紹 2 1.2.2 結構健康監測技術與非破壞檢測的比較 4 1.2.3 損傷指數DI 5 1.2.4 藍姆波訊號變化的因素 7 1.3 本文架構 8 第2章 SMART Layer®系統介紹以及疲勞實驗機器 10 2.1 SMART Layer®診斷系統架構 10 2.2 壓電材料介紹 13 2.3 SHM軟體基本參數介紹 15 2.4 SMART Layer®電磁干擾 17 2.5 疲勞拉伸實驗 18 第3章 等向與非等向材料的藍姆波頻散曲線 19 3.1 藍姆波特性介紹 20 3.2 等向性材料的藍姆波特徵方程式 23 3.2.1 體波運動方程式(Equation of motion) 23 3.2.2 等向性材料的藍姆波方程式推導 25 3.3 等向性材料的藍姆波方程式求解與驗證 29 3.4 非等向性材料的藍姆波特徵方程式 34 3.5 非等向性材料的藍姆波方程式求解與驗證 39 3.6 頻散曲線的應用之TOF圖的建立 41 第4章 單剪力金屬搭接結構 44 4.1 搭接結構-有限元素模型 44 4.2 試件設計與SMART Layer®感測器設置 47 4.2.1 試件EDM的設置 47 4.2.2 試件數量與感測器的設置 48 4.3 單剪力搭接結構TOF圖 49 4.4 試件疲勞試驗與藍姆波訊號量測結果 52 4.4.1 試件疲勞試驗與藍姆波量測步驟 52 4.4.2 試件藍姆波訊號分析 57 4.5 激發頻率的選擇與結構中的疲勞紋 59 4.6 傳統DI值誤判問題 64 4.7 HTB-DI值 68 第5章 複材補片修補結構 74 5.1 複合材料補片修補設計與構想 74 5.2 複材補片修補結構-有限元素模型分析 76 5.3 試件設計與SMART Layer®感測器設置 79 5.3.1 試件設計 79 5.3.2 試件數量與感測器的設置 81 5.4 複合材料補片修補結構TOF圖 83 5.5 試件疲勞實驗情況 85 5.6 金屬面(背面)路徑-訊號圖與HTB-DI值 87 5.6.1 金屬面(背面)路徑-訊號分析 87 5.6.2 金屬面(背面)路徑-HTB-DI值 91 5.7 複材與金屬夾層(正面)路徑-訊號圖與HTB-DI值 93 5.8 複材補片修補結構的傳統DI值與HTB-DI值比較 97 第6章 結論與未來展望 99 6.1 實驗器材介紹與藍姆波頻散曲線的推導與應用 99 6.2 單剪力金屬搭接結構 100 6.3 複材補片修補結構 101 6.4 未來展望 103 參考文獻 104 附錄 110

    [1] 邱昱誠, “SMART Layer系統於結構健康監測之應用研究,” 碩士論文, 國立成功大學, 2018.
    [2] 劉基源, “單剪力搭接結構之非破壞結構健康監測與 SMART Layer 系統應用研究,” 碩士論文, 國立成功大學, 2019.
    [3] T. Rice and D. Roach, "Wide Area Monitoring of Aircraft Structures Using Acousto-Ultrasonic Sensor Networks," FAA William J. Hughes. Technical Center, 2016. Accessed from< https://www.osti.gob/servlets/purl/13 98324> at April 21, 2021.
    [4] J. B. Ihn and F. K. Chang, "Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: II. Validation using riveted joints and repair patches," Smart Materials & Structures, vol. 13, pp. 621-630, 2004.
    [5] V. Y. Senyurek, "Detection of cuts and impact damage at the aircraft wing slat by using Lamb wave method, "Measurement, vol. 67, pp. 10-23, 2015.
    [6] Michalcová, Lenka, Rechcígel, Lukáš, Bělský, Petr,Kucharský and Pavel, "Fatigue disbonding analysis of wide composite panels by means of Lamb waves" Proceedings of the SPIE, vol. 10599, pp. 105991E, 2018.
    [7] V. Memmolo, F. Ricci, L. Maio, N. Boffa and E. Monaco, "Model assisted probability of detection for a guided waves based SHM technique," Health Monitoring of Structural and Biological Systems 2016, vol. 9805, pp. 980504, 2016.
    [8] X. P. Qing, C. Hian-Leng, S. J. Bread and A. Kumar, "An Active Diagnostic System for Structural Health Monitoring of Rocket Engines," Journal of Intelligent Material Systems and Structures, vol. 17, 2006.
    [9] J. B. Ihn and F. K. Chang, "Multicrack growth monitoring at riveted lap joints using piezoelectric patches,"Smart Nondestructive Evaluation for Health Monitoring of Structural and Biological Systems, vol. 4702, 2002.
    [10] M. Gresil, V. Giurgiutiu, Y. Shen and B. Poddar, "Guidelines for Using the Finite Element Method for Modeling Guided Lamb Wave Propagation in SHM Processes," Proceedings of the 6th European Workshop - Structural Health Monitoring 2012, pp. 91-98, 2012.
    [11] S. Ian Lim, L. Cui, Y. Liu and C. Kiong Soh, "Monitoring fatigue crack growth in narrow structural components using Lamb wave technique," Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011, vol. 7981, pp. 798143, 2011.
    [12] B. Alem, A. Abedian and K. Nasrollahi-Nasab, "Reference-Free Damage Identification in Plate-Like Structures Using Lamb-Wave Propagation with Embedded Piezoelectric Sensors," Aerospace Engineering, vol. 29, pp. 6, 2016.
    [13] R. Gorgina, Y. Luoa, Z. Wub, "Environmental and operational conditions effects on Lamb wave based structural health monitoring systems: A review," Ultrasonics, vol. 105, pp. 106114, 2020.
    [14] R. Radecki, W.J. Staszewski, T. Uhl, "Impact of changing temperature on Lamb wave propagation for damage detection, " Key Eng. Mater, vol. 588, pp. 140-148, 2014.
    [15] S. Ahmed, F. Kopsaftopoulos, "Uncertainty quantification of guided waves propagation for active sensing structural health monitoring, " Presented at the Vertical Flight Society 75th Annual Forum & Technology Display, Philadelphia, Pennsylvania, pp. 13-16, 2019.
    [16] M.J. Boon, D. Zarouchas, M. Martinez, et al., "Temperature and load effects on acoustic emission signals for structural health monitoring applications, " Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, pp. 8-11, 2014.
    [17] S. Sikdar, P. Fiborek, P. Kudela, et al., "Effects of debonding on Lamb wave propagation in a bonded composite structure under variable temperature conditions, " Smart Mater. Struct, vol. 28, 2019.
    [18] F.L. Di Scalea, H. Matt, I. Bartoli, "The response of rectangular piezoelectric sensors to Rayleigh and Lamb ultrasonic waves," J. Acoust. Soc. Am, vol. 121, pp. 175-187, 2007.
    [19] J. Lee, Y. Cho, "Using Lamb waves to monitor moisture absorption in thermally fatigued composite laminates, " J Korean Soc. Nondest. Test, vol. 36, pp. 175-180, 2016.
    [20] K.J. Schubert, A.S. Herrmann, "On the influence of moisture absorption on Lamb wave propagation and measurements in viscoelastic CFRP using surface applied piezoelectric sensors," Compos. Struct, vol. 94, pp. 3635-3643, 2012.
    [21] X. Lu, C.K. Soh, P.V. Avvari, "Lamb wave propagation in vibrating structures for effective health monitoring, " Proceedings of SPIE, Health Monitoring of Structural and Biological Systems, vol. 9438, pp. 94381, 2015.
    [22] S.J. Lee, N. Gandhi, J.E. Michaels, et al., "Comparison of the effects of applied loads and temperature variations on guided wave propagation, " AIP Conf. Proc, vol. 30, pp. 175-182, 2011.
    [23] Z. Su, L. Ye and Ye Lu," Guided Lamb waves for identification of damage in composite structures: A review," Journal of Sound and Vibration, vol. 295, pp. 753-780, 2006.
    [24] S. Han, A. N. Palazotto, F. ASCE2 and C. L. Leakeas, "Finite-Element Analysis of Lamb Wave Propagation in a Thin Aluminum Plate," Journal of Aerospace Engineering, vol. 22, pp. 185-197, 2009.
    [25] K. Worden, "Rayleigh and Lamb Waves- Basic Principles," Strain November 2001, vol. 37, pp.167-172, 2008.
    [26] Y. Alkassara, V. K. Agarwala and E. Alshrihib, "Simulation of Lamb Wave Modes Conversions in a Thin Plate for Damage Detection," Procedia Engineering, vol. 173, pp. 948-955, 2017.
    [27] B. Yang, F. Z. Xuan, S. Chen, S. Zhou, Y. Gao and B. Xiao, "Damage localization and identification in WGF/epoxy composite laminates by using Lamb waves: Experiment and simulation," Composite Structures, vol. 165, pp. 138-147, 2017.
    [28] A. Marzani, P. Bocchini, and E. Viola, "A software for the computation of acoustic waves in cylindrical, plate and arbitrary cross-section waveguides," AIPnD - PnD Congresso 2009 Oct 15-17, 2009.
    [29] L. Wang and F. G. Yuan, "Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments," Composites Science and Technology, vol. 67, pp. 1370-1384, 2007.
    [30] S. Pant, J. Laliberte, M. Martinez and B. Rocha, "Derivation and experimental validation of Lamb wave equations for an n-layered anisotropic composite laminate," Composite Structures, vol. 111, pp. 566-579, 2014.
    [31] S. Pant, "Lamb Wave Propagation and Material Characterization of Metallic and Composite Aerospace Structures for Improved Structural Health Monitoring (SHM)," Carleton University, 2014.
    [32] G.Yan, "A Bayesian approach for damage localization in plate-like structures using Lamb waves," Smart Materials and Structures, Vo. 22, pp. 3, 2013.
    [33] C. T. Ng, and M. Veidt, "A Lamb-wave-based technique for damage detection in composite laminates" Smart Materials and Structures, Vol. 18, pp. 7, 2009.
    [34] J. B. Ihn and F. K. Chang, "Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics," Smart Materials & Structures, vol. 13, pp. 609-620, 2003.
    [35] V. Janapati, S. K. Yadav, A. Kumar, R. Ikegami and E. Habtour, "Fatigue crack quantification approach based on multi-path unit-cell concept in sensor network, "8th European Workshop on Structural Health Monitoring, vol. 8, pp. 150-159, 2016.
    [36] B. C. Lee and W. J. Staszewsk, "Lamb wave propagation modelling for damage detection: II. Damage monitoring strategy," Smart Materials and Structures, Vol. 16, pp. 2, 2007.
    [37] R. Jones, L. Molent and S. Pitt, "Study of multi-site damage of fuselage lap joints," Theoretical and Applied Fracture Mechanics, vol. 32, pp. 81-100, 1999.
    [38] L. Gu, A. R. M. Kasavajhala and S. Zhao, "Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs," Composites Part B: Engineering, vol. 42, pp. 505-510, 2011.
    [39] X. P. Qing, S. J. Beard, A. Kumar and R. Hannum, "A real-time active smart patch system for monitoring the integrity of bonded repair on an aircraft structure," Smart Materials & Structures, vol. 15, pp. 66-73, 2006.

    無法下載圖示 校內:2026-07-26公開
    校外:2026-07-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE