| 研究生: |
施昱廷 Shih, Yu-Ting |
|---|---|
| 論文名稱: |
以拆鏈毛球碳材為質子交換膜燃料電池陰極觸媒載體之研究 Unzipped Fluffy Carbon as Cathodic Catalyst Supports for Proton Exchange Membrane Fuel Cells |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 166 |
| 中文關鍵詞: | 質子交換膜燃料電池 、氧氣還原反應 、拆鏈 、毛球碳材 |
| 外文關鍵詞: | Proton exchange membrane fuel cell (PEMFC), oxygen reduction reaction (ORR), unzipping, fluffy carbon |
| 相關次數: | 點閱:146 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以毛球碳材為基材進行拆鏈,以期獲得具有高導電性、高表面積的碳黑、奈米碳管及石墨烯的複合結構,做為質子交換膜燃料電池陰極觸媒擔體,以提高對於氧氣還原活性。
本研究中將毛球碳材以改良的 Hummers' method進行氧化拆鏈,再以不同還原方式移除含氧官能基,此外也將拆鏈毛球碳材混摻聚乙烯吡咯烷酮(Polyvinylpyrrolidone, PVP),再經熱裂解後形成氮摻入拆鏈毛球碳材。
本研究中拆鏈毛球碳材以碳管成長時間50分鐘、氧化劑與毛球碳材比例5 : 1及快速調溫還原在900oC持溫10分鐘為典型條件,探討碳管成長時間、拆鏈時氧化劑與毛球碳材比例對電化學活性的影響及最佳氧化石墨還原方式。研究結果顯示碳管成長50分鐘時,在0.65及0.7 V (vs. Ag/AgCl) 下具有最高質量活性為9.57及3.77 A/ gPt;在拆鏈時氧化劑與毛球碳材比例對電化學活性的影響方面,以氧化劑與毛球碳材比例5 : 1具有最高質量活性,在0.65及0.7 V (vs. Ag/AgCl) 下分別為9.57及3.77 A/ gPt;而在各種氧化石墨還原方法中,以快速調溫還原法製得之觸媒較其他還原方法製得之觸媒有較高的白金分散性及氧氣還原活性。針對快速調溫還原法的熱處理溫度及時間進行最佳化測試,結果顯示溫度1000oC持溫20分鐘下製得的拆鏈毛球碳材,具有最高比表面積714.7 m2/g和最高質量活性,在0.65及0.7 V (vs. Ag/AgCl) 下分別為9.95及4.01 A/ gPt,為本研究中氧氣還原活性最高的觸媒。
此外,探討拆鏈毛球碳材混摻PVP時,混摻比例對氧氣還原活性的影響,在碳管成長時間50分鐘及氧化劑與毛球碳材比例5 : 1之拆鏈毛球碳材混摻PVP,並以快速調溫900及1000oC持溫10分鐘為典型條件下,混摻PVP與拆鏈毛球碳材比例8 : 1經1000oC裂解所得觸媒在0.65及0.7 V (vs. Ag/AgCl) 下具有較高質量活性為7.57及1.93 A/ gPt,但仍低於未混摻的結果,混摻效果並不佳。最後在單電池測試中,以半電池測試中質量活性最高的觸媒進行放電測試,所得最大放電功率為114.7 mW/cm2,為商用白金觸媒的117 %。
Unzipped fluffy carbon (UFC) prepared by strong oxidation and rapid thermal reduction of fluffy carbon (FC) was explored as advanced cathodic catalyst supports to increase oxygen reduction reaction (ORR) activity for proton exchange membrane fuel cells (PEMFC). In this study, fluffy carbon was unzipped by modified Hummers' method and used rapid thermal reduction to remove oxygen functional group.
The result indicated that UFC prepared by the condition of CNT growth time 50 min, oxidant to fluffy carbon ratio 5 : 1, and annealed at 1000oC for 20 min showed the highest surface area 714.7 m2/g and mass activity 9.95 and 4.01 A/g Pt at 0.65 and 0.7 V (vs. Ag/AgCl) in the research. In the single cell test results, the maximum power density of the best home-made catalysts (114.7 mW/cm2) is 117 % of that of commercial Pt/C catalsyt.
1. 許寧逸,顏溪成. 由碳能朝向氫能的燃料電池. 科學發展 2003, 367期, 6-11.
2. O. Z. Sharaf, M. F. Orhan. An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews 2014, 32, 810-853.
3. A. H. Brian C. H. Steele. Materials for fuel-cell technologies. Nature 2001, 414, 345-352.
4. 陳郁文. 以聚苯胺製備質子交換膜燃料電池陰極觸媒之研究. 國立成功大學化學工程學系碩士論文 2013.
5. A. L. Dicks. Molten carbonate fuel cells. Current Opinion in Solid State and Materials Science 2004, 8, 379-383.
6. J. L. Silveira, E. n. M. Leal, L. F. R. Jr. Analysis of a molten carbonate fuel cell: cogeneration to produce electricity and cold water. Energy 2001, 26, 891-904.
7. Ó. González-Espasandín, T. J. Leo, E. Navarro-Arévalo. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion. The Scientific World Journal 2014, 2014, 1-12.
8. M. W. Melaina. Biogas and Fuel Cell Oppertunities. 2013 AgSTAR National Conference 2013.
9. 江宇青. 2014年日本國際氫能與燃料電池展. 2014.
10. 氫能與燃料電池 - 綠色能源產業資訊網. 經濟部能源局 2013.
11. D. Carter, J. Wing. The Fuel Cell Industry Review 2013. FuelCellToday 2013.
12. 黃朝榮,林修正. 燃料電池的心臟-電極模組. 科學發展 2003, 367期, 26-29.
13. D. h. Ye, Z. g. Zhan. A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells. Journal of Power Sources 2013, 231, 285-292.
14. J. Payne. Nafion® - Perfluorosulfonate Ionomer. 2005.
15. H. Huang, P. K. Dasgupta, Z. Genfa. A Pulse Amperometric Sensor for the Measurement of Atmospheric Hydrogen Peroxide. Journal of Analytical Chemistry 1996, 68, 2062-2066.
16. H. L. Huang, P. K. Dasgupta, Z. Genfa, J. Wang. A pulse amperometric sensor for the measurement of atmospheric hydrogen peroxide. Analytical Chemistry 1996, 68, 2062-2066.
17. W. W. Yangdong Qian, Peter A. Adcock, Zheng Jiang, Nazih Hakim, Madhu S. Saha, and Sanjeev Mukerjee. PtM/C Catalyst Prepared Using Reverse Micelle Method for Oxygen Reduction Reaction in PEM Fuel Cells. Journal of Physical Chemistry C 2008, 112, 1146-1157.
18. X. Yu, S. Ye. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Journal of Power Sources 2007, 172, 133-144.
19. J. L. J. Bett, E. Washington, P. Stonehart. Platinum crystallite size considerations for electrocatalytic oxygen reduction—I. Electrochimica Acta 1973, 18, 343-348.
20. L. J. Bregoli. The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid. Electrochimica Acta 1978, 23, 489-492.
21. 楊志忠, 林頌恩, 韋文誠. 燃料電池的發展現況. 科學發展 2003, 367期, 30-33.
22. Y. Liang, Y. Li, HailiangWang, J. Zhou, JianWang, T. Regier, H. Dai. Co(3)O(4) nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature materials 2011, 10, 780-6.
23. J.-Y. Choi, D. Higgins, Z. Chen. Highly Durable Graphene Nanosheet Supported Iron Catalyst for Oxygen Reduction Reaction in PEM Fuel Cells. Journal of The Electrochemical Society 2012, 159, B87.
24. 陳陵援, 林修正. 萬事具備,不可欠「東風」燃料電池中的觸媒. 科學發展 2003, 370期, 24-27.
25. B. B. T. S.Olson, B. Piela, J. R. Davey, P. Zelenay, P. Atanassov. Electrochemical Evaluation of Porous Non-PlatinumOxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells. FUEL CELLS 2009, No. 5, 547-553.
26. Y.-C. Tseng, H.-S. Chen, C.-W. Liu, T.-H. Yeh, K.-W. Wang. The effect of alloying on the oxygen reduction reaction activity of carbon-supported PtCu and PtPd nanorods. Journal of Materials Chemistry A 2014, 2, 4270.
27. Z. Chen, D. Higgins, H. Tao, R. S. Hsu, Z. Chen. Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications. Journal of Physical Chemistry C 2009, 113, 21008-21013.
28. J. Cao, Y. Chu, X. Tan. Pt/XC-72 catalysts coated with nitrogen-doped carbon (Pt/XC-72@C–N) for methanol electro-oxidation. Materials Chemistry and Physics 2014, 144, 17-24.
29. M. Cao, D. Wu, R. Cao. Recent Advances in the Stabilization of Platinum Electrocatalysts for Fuel-Cell Reactions. ChemCatChem 2014, 6, 26-45.
30. S. lijima. Helical microtubules of graphitic carbon. Nature 1991, 354.
31. M. S. Saha, A. Kundu. Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode. Journal of Power Sources 2010, 195, 6255-6261.
32. 黃建盛. 奈米碳管簡介. 科學新天地 2006, 第13期, 4-9.
33. E. Antolini. Graphene as a new carbon support for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental 2012, 123-124, 52-68.
34. C.-F. Chi, M.-C. Yang, H.-S. Weng. A proper amount of carbon nanotubes for improving the performance of Pt–Ru/C catalysts for methanol electro-oxidation. Journal of Power Sources 2009, 193, 462-469.
35. Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook, H. Dai. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nature nanotechnology 2012, 7, 394-400.
36. D. Long, W. Li, W. Qiao, J. Miyawaki, S. H. Yoon, I. Mochida, L. Ling. Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells. Chemical communications 2011, 47, 9429-31.
37. Brodi. Sur le poids atomique de graphite. Anal. Chim. Phys. 1860, 59, 466-472.
38. L. Staudenmaier. Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft 1898, 31, 1481-1487.
39. H. Hamdi. Zur Kenntnis der kolloidchemischen Eigenschaften des Humus. Fortschrittsberichte über Kolloide und Polymere 1943, 54, 554-634.
40. J. WILLIAM S. HUMMERS, AND RICHARD E. OFFEMA. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
41. E. B. Sandip Niyogi, Mikhail E. Itkis, Jared L. McWilliams, Mark A. Hamon, and Robert C. Haddon. Solution Properties of Graphite and Graphene. Journal of the American Chemical Society 2006, 128, 7720-7721.
42. A. M. T. NAKAJIMA, and R. HAGIWARA. A new structure model of graphite oxide. Carbon 1988, 26, 357-361.
43. P. J. O. Nina I. Kovtyukhova, Benjamin R. Martin,Thomas E. Mallouk, Sergey A. Chizhik, Eugenia V. Buzaneva, and Alexandr D. Gorchinskiy. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Carbon material 1999, 11, 771-778.
44. M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon 2004, 42, 2929-2937.
45. I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, R. S. Ruoff. Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry. Journal of Physical Chemistry C 2008, 112, 8499-8506.
46. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.
47. C. G. mez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano letters 2007, 7, 3499-3503.
48. S. Gilje, S. Han, M. Wang, K. L. Wang, R. B. Kaner. A Chemical Route to Graphene for Device Applications. Nano letters 2007, 7, 3394-3398.
49. S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff. Graphene-based composite materials. Nature 2006, 442, 282-6.
50. G. Eda, G. Fanchini, M. Chhowalla. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature nanotechnology 2008, 3, 270-4.
51. V. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner. High-throughput solution processing of large-scale graphene. Nature nanotechnology 2009, 4, 25-9.
52. A. B. Bourlinos, D. Gournis, D. Petridis, T. s. Szabo´, A. Szeri, I. De´ka´ny. Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids. Langmuir 2003, 19, 6050-6055.
53. H.-J. Shin, K. K. Kim, A. Benayad, S.-M. Yoon, H. K. Park, I.-S. Jung, M. H. Jin, H.-K. Jeong, J. M. Kim, J.-Y. Choi, Y. H. Lee. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials 2009, 19, 1987-1992.
54. J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, M. Ye. Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets. Chemistry of Materials 2009, 21, 3514-3520.
55. Y. S. a. E. T. Samulski. Synthesis of Water Soluble Graphene. Nano letters 2008, 8, 1679-1682.
56. N. Mohanty, A. Nagaraja, J. Armesto, V. Berry. High-throughput, ultrafast synthesis of solution- dispersed graphene via a facile hydride chemistry. Small 2010, 6, 226-31.
57. J. Y. Guoxiu Wang, Jinsoo Park, Xinglong Gou, Bei Wang, Hao Liu, and Jane Yao. Facile Synthesis and Characterization of Graphene Nanosheets. Journal of Physical Chemistry C 2008, 112, 8192-8195.
58. Y. Chen, X. Zhang, P. Yu, Y. Ma. Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chemical communications 2009, 4527-9.
59. X. Wang, L. Zhi, K. Mullen. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano letters 2008, 8, 323-327.
60. H. A. Becerril, Z. L. Jie Mao, R. M. Stoltenberg, Z. Bao, Y. Chen. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS NANO 2008, 2, 463-470.
61. E. ATUYAM. Pyrolysis of Graphitic Acid. Journal of Physical Chemistry C 1954, 58, 215-219.
62. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, H. Dai. Simultaneous Nitrogen Doping and Reduction of Graphene Oxide. J. Am. Chem. Soc. 2009, 131, 15939-15944.
63. W. Gao, L. B. Alemany, L. Ci, P. M. Ajayan. New insights into the structure and reduction of graphite oxide. Nature Chemistry 2009, 1, 403-408.
64. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace. Processable aqueous dispersions of graphene nanosheets. Nature nanotechnology 2008, 3, 101-5.
65. V. Lee, L. Whittaker, C. Jaye, K. M. Baroudi, D. A. Fischer, S. Banerjee. Large-Area Chemically Modified Graphene Films: Electrophoretic Deposition and Characterization by Soft X-ray Absorption Spectroscopy. Chemistry of Materials 2009, 21, 3905-3916.
66. M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry 2009, 15, 6116-20.
67. Z. Wang, X. Zhou, J. Zhang, F. Boey, H. Zhang. Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. Journal of Physical Chemistry C 2009, 113, 14071-14075.
68. G. Williams, B. Seger, P. V. Kamat. TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano 2008, 2, 1487-1491.
69. J. WU, H. YANG. Platinum-Based Oxygen Reduction Electrocatalysts. Acc. Chem. Res. 2013, 46, 1848-1857.
70. A. Rabis, P. Rodriguez, T. J. Schmidt. Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. ACS Catalysis 2012, 2, 864-890.
71. R. Hug. Fuel Cell Research and Development in Southern Germany: Institutes and Companies Forging Ahead into the Future. Solar Server 2001.
72. Y. W. Rho, S. Srinivasan. Mass Transport Phenomena in Proton Exchange Membrane. J. Electrochem. Soc. 1994, 141, 2089-2096.
73. J. Owejan, T. Trabold, D. Jacobson, M. Arif, S. Kandlikar. Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell. International Journal of Hydrogen Energy 2007, 32, 4489-4502.
74. S. Satyapal. hydrogen & fuel cells-program overview. 2011 Annual Merit Review and Peer Evaluation Meeting 2011.
75. S. Satyapal, D. Papageorgopoulos. Fuel Cell Technologies Overview. U.S. Department of Energy Fuel Cell Technologies Program 2011.
76. 唐可縈. 石墨烯應用在直接甲醇燃料電池觸媒擔體之研究—碳材混摻及親水修飾. 國立成功大學化學工程學系碩士論文 2012.
77. 陸瑞東. 以十二烷基胺修飾之碳材及海膽型碳材為質子交換膜燃料電池觸媒載體之研究. 國立成功大學化學工程學系博士論文 2012.
78. 薛志鴻. 質子交換膜型燃料電池電極在CO存在下之阻抗分析. 國立成功大學化學工程學系碩士論文 2005.
79. 薛志鴻. 質子交換膜型燃料電池電極在CO存在下之阻抗分析. 國立成功大學化學工程學系碩士論文 2003.
80. J. Wang, G. Yin, Y. Shao, Z. Wang, Y. Gao. Investigation of Further Improvement of Platinum Catalyst Durability with Highly Graphitized Carbon Nanotubes Support. Journal of Physical Chemistry C 2008, 112, 5784-5789.
81. Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon. Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres. Journal of Materials Chemistry 2006, 16, 2984.
82. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, R. Car. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano letters 2008, 8, 36-41.
83. D. Cai, S. Wang, P. Lian, X. Zhu, D. Li, W. Yang, H. Wang. Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochimica Acta 2013, 90, 492-497.
84. H. Zhang, T. Kuila, N. H. Kim, D. S. Yu, J. H. Lee. Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon 2014, 69, 66-78.
85. D. W. Wang, D. s. Su. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy & Environmental Science 2014, 7, 576.
86. P. L. Kuo, C. H. Hsu, W. T. Li, J. Y. Jhan, W. F. Chen. Sea urchin-like mesoporous carbon material grown with carbon nanotubes as a cathode catalyst support for fuel cells. Journal of Power Sources 2010, 195, 7983-7990.
87. 陳怡君. 以不同海膽狀碳材製備鉑-釕觸媒用於電催化甲醇氧化反應. 國立成功大學化學工程學系碩士論文 2009.
88. J. Qi, Y. Gao, S. Tang, L. Jiang, S. Yan, J. Guo, Q. Xin, G. Sun. Synthesis and Characterization of Carbon Nanoribbons as Electrocatalyst Supports for Direct Methanol Fuel Cells. Chinese Journal of Catalysis 2006, 27, 708-712.
89. C. Wang, H. Li, J. Zhao, Y. Zhu, W. Z. Yuan, Y. Zhang. Graphene nanoribbons as a novel support material for high performance fuel cell electrocatalysts. International Journal of Hydrogen Energy 2013, 38, 13230-13237.
90. N. Zhuang, C. Liu, L. Jia, L. Wei, J. Cai, Y. Guo, Y. Zhang, X. Hu, J. Chen, X. Chen, Y. Tang. Clean unzipping by steam etching to synthesize graphene nanoribbons. Nanotechnology 2013, 24, 325604.