| 研究生: |
葉東欣 Yeh, Tung-hsin |
|---|---|
| 論文名稱: |
熱電致冷晶片應用於煉焦爐攝影系統之設計與熱傳分析 Numerical Modeling and Design of an Inspection Device with Thermoelectric Coolers for the Coke Oven |
| 指導教授: |
張錦裕
Jang, Jiin-yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 計算流體力學 、煉焦爐 、熱電致冷晶片 |
| 外文關鍵詞: | CFD, coke oven, thermoelectric cooler |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要開發一套耐高溫之攝影系統,使CCD攝影機於高溫達1200 ℃之煉焦爐中保持40 ℃以下,讓該系統成為煉焦爐牆損壞檢測工具之一。此系統將CCD攝影機架設於雙層隔熱盒中以氣冷搭配熱電致冷晶片來冷卻,隔熱盒尾端連接兩同心套管,內管內包覆攝影系統所需線材,內外管間為空氣流道,外層再包覆隔熱材料,目的使空氣經由長20.5公尺之套管進入隔熱盒時仍保持低溫。隔熱盒中採雙層流道設計,外流道主要阻絕來自隔熱盒表面的熱,內流道空氣則流經散熱鳍片帶走致冷晶片熱端所產生的熱,致冷晶片冷端則用來冷卻CCD攝影機。
本研究利用商業套裝軟體CFD-RC建立三維模型,分別計算空氣套管與承載裝置於1200 ℃之煉焦爐中往返20.5公尺,其溫度變化。經評估空氣套管與隔熱盒整體計算結果,建議空氣套管之陶瓷纖維隔熱材厚度為50 mm,空氣流量為3~5 Nm3/min,而隔熱盒內每片致冷晶片輸入功率為45 W,整套系統共使用四片,每片再搭配熱傳面積為0.15 m2之散熱片,依上述條件,隔熱盒於煉焦爐內時可保持CCD攝影機溫度於35 ℃左右。此外,隔熱盒重量為10公斤,外部尺寸長寬高分別為420 mm、280 mm與280 mm。
In this study, we developed an inspection device protecting a camera inside and sustaining high temperature long enough such that it can be permanently-installed on the pusher ram beam. Note that the temperature of a coking chamber during operation is about 1200 C while the maximum tolerable temperature of a camera is less than 40 C. The developed device should function as a good thermal insulator and with a cooling device for the camera at the pusher head and for signal cables along the beam.
We numerically demonstrated the performance of a proposed inspection device, which can eliminate all concerns above by employing air cooling and thermoelectric coolers. The cooling air is guided into a heat insulated box and divided into two streams. One stream cut off the heat coming from the exterior surface of the box. The other stream was mainly used to discharge the heat from the thermoelectric cooler. In this work, three-dimensional numerical model of the device was built for simulating the temperature distribution inside the device with CFD commercial-available software. The numerical results show that the camera can maintain around 35 C during normal operation of coke oven under given conditions. These conditions are: (a) The flow rate of the cooling air is 3~4 Nm3/min and its temperature is 30 C; (b) Each thermoelectric cooler requires 45 W as the input power with a heat sink whose heat transfer area is 0.15 m2. In addition, the weight of insulated box is about 10 kg, and its dimensions are 420 mm × 280 mm × 280 mm。
1. Yazaki, T., Suzuki, K. and Tsukihara, Y., “Diagnostic System for Coke-Oven Wall”, Kawasaki Steel Technical Report, No.32 March, pp19-24, 1995.
2. Grosse-Wilde, M. and Huhn, D.F., “Investigation into the Deformation of Coke Oven Walls Applying the Laser Triangulation Measuring Technique”, Cokemaking International, pp.42-49, 1996.
3. Nivoix, F. and Gaillet, J.P., “Evaluation of Coke Oven Refractory Damage with the Videofil Machine”, Ironmaking Conference Proceedings, We2:2-1, 2005.
4. Bahe, J., Karst, J.L., Hergalant, Y. and Gaillet, J.P., “Development of a Mobile Chamber Wall temperature Measurement Device”, Ironmaking Conference Proceedings, Mo4:5-1, 2005.
5. Toshihiko, N., Michitaka, S., Jun, N., Masato, S., Yasuhiko, A. and Masahiko, Y., “Development of Coke Oven Chamber Wall Diagnosing-Repairing Apparatus”, 4th International Congress on the Science and Technology of Ironmaking, C211, 2006.
6. Hirofumi, Y., Hironobu, I., Shunji, H. and Nobuki, T., “Development of a Ceramic Welding Machine for Coke Oven Carbonization Chamber”, 4th International Congress on the Science and Technology of Ironmaking, C222, 2006.
7. Hideo, M., Hironobu, I., Manabu, S. and Nobuki, T., “Development of an Observation Device Installed Permanently on the Pusher for Coke Oven Inside Observation”, 4th International Congress on the Science and Technology of Ironmaking, C212, 2006.
8. Ashida, K. and Hiroyuki, T., “Development of Wall Roughness Monitoring System in Coke Oven Chamber”, CAMP-ISIJ, Vol.14-1004, 2001.
9. Ashida, T., Takase, S., Saji, T. and Miyamoto, M., “Development of Crack Inspection and Width Measurement System in Coke Oven”, CAMP-ISIJ, Vol.11-154, 1998.
10. Inaba, H. and Takayama, S., “Establishment of Chamber Repairing Technique with Measuring Chamber Width Data”, CAMP-ISIJ, Vol.15-65, 2002.
11. Garin, J. and Leroy, J.M., “Diagnosis and Life Prediction of Aging Coke Oven Plants”, Iron & Stellmaker, Vol. 21, pp.49-55, 1994.
12. Hidekuni, I., “The Investigation of Coke Oven Deterioration”, Cokemaking Technology Update, pp.70-81, 1997.
13. Nivoix, F. and Gaillet, J.P., “Coke Oven Repair Assisted by Endoscopy”, 3rd International Cokemaking Congress, pp.196-200, 1996.
14. Sakaida, M., Yokomizo, M., Kajiya, T. and Sugiura, M., “Service Life Extension Technology for Coke Ovens”, Ironmaking Conference Proceeding, pp.363-369, 2002.
15. Shizuki, K. and Takeshi, A., “New Technologies for Prokonging Coke Oven Life”, Kawasaki Technical Report No.38, pp.11-16, 1998.
16. Yokomizo, M., “Service Life Extension Technology for Coke Ovens at Nippon Steel”, International Iron and Steel Institute-Seminar on Coke, pp.5-19, 2001.
17. Duckworth, Henry E., “Electricity and Magnetism”, Holt, Rinehart and Winston, New York, pp. 181-182, 1960.
18. Dagan, G., “Flow and Transport in Porous Formations”, Springer-Verlag, 1989.
19. Launder, B.E. and Spalding, D.B. “The Numerical Computation of Turbulent Flows”, Comp. Meth. in Appl. Mech. and Eng., 3, pp. 269-289, 1974.
20. Launder, B.E. and Spalding, D.B. “Mathematical Models of Turbulence”, Academic, London, Chap. 5, pp.90-100, 1972.
21. Siegel, R. and Howell, J., “Thermal Radiation Heat Transfer”, 4th Ed., Taylor and Francis, New York, 2002.
22. CFD-ACE(U), CFD Research Corporation, Albama, USA, 2004.
23. STAR-CD, Methodology, Version 3.15, Japan, 2001
24. Van Doormaal, J.P. and Raithby, F.D., “Enhancements of the SIMPLE Method predicting Incompressible fliud flows”, Numerical heat Transfer, Vol. 7, pp. 147-163, 1984.
25. Patankar, S.V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing corpotation, 1984.