| 研究生: |
薛懷甯 Hsueh, Hwai-Ning |
|---|---|
| 論文名稱: |
電漿致動器最佳化及其於三角翼上應用之研究 Optimization of a Dielectric Barrier Discharge Plasma Actuator and Its Application on a Delta Wing |
| 指導教授: |
溫志湧
Wen, Chih-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 電漿致動器 、介電質放電 、離子風 、最佳化 、三角翼 |
| 外文關鍵詞: | Plasma Actuator, Dielectric Barrier Discharge, Ionic Wind, Optimization, Delta Wing |
| 相關次數: | 點閱:196 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
題 目:電漿致動器最佳化及其於三角翼上應用之研究
研 究 生:薛懷甯
指導教授:溫志湧
電漿致動器主要作用原理是在飛具表面通以高壓電場解離鄰近氣體形成電漿,藉由電場誘導產生的離子風(Ionic wind)來改變邊界層速度分佈,以改變飛具之空氣動力特性。電漿致動器根據其構造不同可大略分為兩大類:光暈放電(Corona discharge)以及介電質放電(Dielectric barrier discharge) 。
本研究先對電漿致動器的電極幾何參數進行最佳化,實驗結果發現當暴露電極(Exposed electrode)寬度越窄、覆蓋電極(Encapsulated electrode)寬度越寬,兩電極不重疊時,電漿致動器誘導出的離子風將變大。經過最佳化後之電漿致動器,會裝置在三角翼翼前緣,實際進行流場可視化(Flow visualization)以及氣動力量測實驗。實驗結果顯示,電漿致動器能明顯改變三角翼兩側渦流潰散位置,並提升升力係數以及滾轉力矩,且最佳化致動器之提升幅度優於實驗中其他致動器。
Abstract
Subject:Optimization of a DBD Plasma Actuator and Its Application on a Delta Wing
Student:Hwai-Ning Hsueh
Advisor:Chih-Yung Wen
The working principle of plasma actuators is applying a high voltage electric field to ionize the air on the surface of an aerial vehicle. The boundary layer is accelerated by the ionic wind that is induced by the electric field so that to change the aerodynamic character. Then, plasma actuators can be categorized as corona discharge and dielectric barrier discharge (DBD).
The research optimizes the electrode dimensions of the dielectric barrier discharge actuators at first. The results indicate that the velocity of the induced ionic wind will be larger if the exposed electrode is narrow, covered electrode is wide and two electrode are not overlapped. The optimized actuator will be set on the leading edge of the delta wing, and the flow visualization and force measurements are performed. The result shows that the breakdown positions of the vortices are changed, and the optimized actuator can enhance more lift and the roll moment of the delta wing.
[1] M. Gad-El-Hak, “Flow Control,” Cambridge: Cambridge University Press, 2000
[2] E. Moreau, “Airflow Control by Non-thermal Plasma Actuators,” Journal of Physics, Vol.40, pp.605-636, 2007
[3] F. Rogier, J. C. Matéo-Vélez and Géraldine Quinio, “Numerical Modeling of DC Discharges in Air Flows,” Conference on Computational Physics, 2006
[4] A. M. Mitchell, J. Delery, “Research into Vortex Breakdown Control,” Progress in Aerospace Sciences Vol.37 No.4, pp.385-418, 2001
[5] I. Gursul, “Review of Unsteady Vortex Flows over Slender Delta Wings,” Journal of Aircraft, Vol.42 No.2, pp.299-319, 2005
[6] J. D’Adamo, G. Artana, E. Moreau, and G. Touchard, “Control of the Airflow Close to a Flat Plate with Electrohydrodynamic Actuators,” ASME Paper No.2002-31041, 2002
[7] R. Sosa, and G. Artana, “Steady Control of Laminar Separation over Airfoils with Plasma Sheet Actuators,” Journal of Electrostatics, Vol. 64, pp.604-610, 2006
[8] F. Soetomo, “The Influence of High Voltage Discharge on Flat Plate Drag at Low Reynolds Number Air Flow,” MS Thesis, Iowa State University, 1992
[9] H. R. Velkoff and J. Ketcham, “Effect of an Electrostatic Field on Boundary Layer Transition,” AIAA Journal, Vol. 16, pp.1381–1383, 1968
[10] G. M. Colver and S. E. Khabiry, “Modeling of DC Corona Discharge Along an Electrically Conductive Flat Plate with Gas Flow,” IEEE Trans. Ind. Appl., Vol. 35, NO. 2, pp.387-394, 1999
[11] L. Leger, E. Moreau, G. Artana and G. Touchard, “Influence of a DC Corona Discharge on The Airflow Along an Inclined Flat Plate,” Journal of Electrostatics , Vol. 51-52, pp.300-306, 2001
[12] E. Moreau, L. Leger, and G. Touchard, “Effect of a DC Surface-Corona Discharge on a Flat Plate Boundary Layer for Air Flow Velocity up to 25m/s,” Journal of Electrostatics, Vol. 64, pp.215-225, 2006
[13] L. Leger, E. Moreau, and G. Touchard, “Effect of a DC Corona Electrical Discharge on the Airflow Along a Flat Plate,” IEEE Trans. Ind. Appl., Vol. 38 pp.1478-1485, 2002
[14] C. Louste, E. Moreau, and G. Touchard, “DC Corona Surface Discharge Along an Insulating Flat Plate in Air: Experimental Results,” Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp.822-826, 2002
[15] 李卓翰,”電漿致動器於三角翼上之應用”,國立成功大學航太所,2009
[16] A. Fridman, A. Chirokov and A. Gutsol, “Non-thermal Atmospheric Pressure Discharge,” Journal of Physics D: Appl. Phys., Vol. 38, pp.1-24, 2005
[17] S. Yokoyama, M. Kogoma, T. Morikawi and S. Okazaki, “The Mechanisms of the Stabilized Glow Plasma at Atmospheric Pressure,” Journal of Physics, D: Appl. Phys., pp.1125-1128, 1990
[18] F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. S´egur and C. Mayoux, “Experimental and Theoretical Study of a Glow Discharge at Atmospheric Pressure Controlled by Dielectric Barrier,” Journal of Physics, D: Appl. Phys., Vol. 83, pp.2950–2957, 1998
[19] J. R. Roth and D. M. Sherman, “Boundary Layer Flow Control With a One Atmosphere Uniform Glow Discharge Surface Plasma,” AIAA 36th Aerospace Sciences Meeting and Exhibit, 1998
[20] J. R. Roth, “Subsonic Plasma Aerodynamics for Flight Control of Aircraft,” 2006
[21] C. L. Enloe, T. E. McLaughlin, R. D. VanDyken, and K. D. Kachner, “Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology,” AIAA Journal, Vol.42, No.3, pp.589-594, 2004
[22] M. L. Post and T. C. Corke, “Separation Control on High Angle of Attack Airfoil Using Plasma Actuators,” AIAA Journal, Vol.42, No.11, pp.2177-2184, 2004
[23] T. C. Corke, M. L. Post, and D. M. Orlov, “Single-Dielectric Barrier Discharge Plasma Enhanced Aerodynamics: Concepts, Optimization, and Applications,” Journal of Propulsion and Power, Vol.24, pp.935-945, 2008
[24] J. C. Laurentie, J. Jolibois, and E. Moreau, “Surface Dielectric Barrier Discharge: Effect of Encapsulation of the Grounded Electrode on the Electromechanical Characteristics of the Plasma Actuator”, Journal of Electrostatics, Vol. 67, pp.93–98, 2009
[25] 陳信安,”電漿介電質放電技術應用於三角翼空氣動力特性之研究”,國立成功大學航太所,2010
[26] Martiqua L. Post, Thomas C. Corke, “Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil,” AIAA Journal, Vol. 44, No. 12, 2006
[27] D. Greenblatt, C. Y. Schüle, D. Romann, and C. O. Paschereit, “Dielectric Barrier Discharge Flow Control at Very Low Flight Reynolds Numbers,” AIAA Journal, Vol. 46, No. 6, 2008
[28] D. Greenblatt, Y. Kastantin, C. N. Nayeri, and C. O. Paschereit, “Delta-Wing Flow Control Using Dielectric Barrier Discharge Actuators,” AIAA Journal, Vol. 46, No. 6, 2008
[29] 陳得明,”脈衝電漿介電質放電技術應用於三角翼之研究”,國立成功大學航太所,2011
[30] J. Jacob, R. Rivir and C. Carter, “Boundary Layer Flow Control Using AC Discharge Plasma Actuators,” AIAA 2nd Flow Control Meeting, Portland, Oregon, June 28-July 1, 2004
[31] J. Jolibois, Maxime Forte and Eric Moreau, “Application of an AC barrier discharge actuator to control airflow separation above a NACA 0015 airfoil: Optimization of the actuation location along the chord,” Journal of Electrostatics, pp. 496-503, 2008
[32] P. Versailles, V. G. Gosselin and H. D. Vo, “Impact of Pressure and Temperature on the Performance of Plasma Actuators,” AIAA Journal, Vol. 48, No 4, 2010
[33] Eric Moreau, Roberto Sosa and Guillermo Artana, “Electric wind produced by surface plasma actuators: a new dielectric barrier discharge based on a three-electrode geometry,” Journal of Physics D: Appl. Phys., Vol. 41, 2008
[34] N. Benard, N. Balcon and E. Moreau, “Electric wind produced by a surface dielectric barrier discharge operating in air at different pressures: aeronautical control insights,” Journal Physics D: Appl. Phys., Vol. 41, 2008
[35] M. Forte, J. Jolibois, J. Pons, E. Moreau, G. Touchard, M. Cazalens, “Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control,” Experimental Fluids, Vol.43, pp.917–928, 2007
[36] G. Artana, R. Sosa, E. Moreau and G. Touchard, “Control of the Near-wake Flow Around a Circular Cylinder with Electrohydrodynamic Actuators,” Experiments in Fluids, Vol. 35, pp.580-588, 2003
[37] A. Asghar and E. Jumper, “Phase Synchronization of Vortex Shedding from Two Side-by-Side Circular Cylinders Using Plasma Actuators,” AIAA Meeting paper 2004-925, 2004
[38] F. O. Thomas, A. Kozlov and T. C. Corke, “Plasma Actuators for Bluff Body Flow Control,” AIAA Meeting paper 2006-2845, 2006
[39] F. O. Thomas, A. Kozlov, and T. C. Corke, “Plasma Actuators for Cylinder Flow Control and Noise Reduction,” AIAA Journal Vol.46 No.8, pp.1921-1931, 2008
[40] A. Santhanakrishnan and J. D. Jacob, “On Plasma Synthetic Jet Actuators,” 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006
[41] J. Huang, T. C. Corke, and F. O. Thomas, “Unsteady Plasma Actuators for Separation Control of Low-Pressure Turbine Blades,” AIAA Journal, Vol.44 No.7, pp.1477-1487, 2006
[42] A. Labergue, E. Moreau, N. Zouzou and G. Touchard, “Separation Control Using Plasma Actuators: Application to a Free Turbulent Jet,” Journal of Physics D: Appl. Phys., Vol. 40, pp.674–684, 2007
[43] D. Bivolaru, S. P. Kuo, “Aerodynamic Modification of Supersonic Flow around Truncated Cone Using Pulsed Electrical Discharges,” AIAA Journal, Vol.43 No.7, pp.1482-1489, 2005
[44] P. Q. Elias, B. Chanetz, S. Larigaldie, and D. Packan, “Study of the Effect of Glow Discharges near a M=3 Bow Shock,” AIAA Journal, Vol.45 No.9, pp.2237-2245, 2007
[45] P. Q. Elias, B. Chanetz, S. Larigaldie, D. Packan and C. O. Laux, “Mach 3 Shock Wave Unsteadiness Alleviation Using a Negative Corona Discharge,” AIAA Journal, Vol.46 No.8, pp.2042-2049, 2008
[46] R. C. Nelson, T. C. Corke, C. He, H. Othman, T. Matsuno, M. P. Patel, and T. T. Ng, “Modification of the Flow Structure over a UAV Wing for Roll Control,” AIAA paper 45th Aerospace Sciences Meeting, 2007
[47] A. M. Mitchell, P. Molton, D. Barberis, and J. Delery, “Vortical Substructures in the Shear Layers Forming Leading Edge Vortices,” AIAA paper 2001-31012, 2001
[48] Y. Guy, J. A. Morrow, and T. E. Mclaughlin, “Velocity Measurements on a Delta Wing with Periodic Blowing and Suction,” AIAA paper 2000-0550,2000
[49] S. G. Siegel, and J. A. Morrow, “PIV Measurements on a Delta Wing with Periodic Blowing and Suction,” AIAA paper 2001-2436,2001
[50] J. X. Zhan, and J. J. Wang, “Experimental Study on Gurney Flap and Apex Flap on a DeltaWing,” Journal of Aircraft, Vol. 41, pp.1379-1383, 2004
[51] Flint O. Thomas, Thomas C. Corke, Muhammad Iqbal, Alexey Kozlov, David Schatzman, “Optimization of Dielectric Barrier Discharge Plasma Actuators
for Active Aerodynamic Flow Control,” AIAA Journal, Vol. 47, No. 9, 2009
[52] M. Cheong, A. Greig, B. Gibson, M. Arjomandi, “An Investigation into the Effect of Electric Field on the Performance of Dielectric Barrier Discharge Plasma Actuators,” Experimental Thermal and Fluid Science, 2011
[53] A.D. Budovsky, B.Yu. Zanin, I.D. Zverkov, V.V. Kozlov, A.A. Maslov, B.V. Postnikov, A.A. Sidorenko, “Plasma Control of Vortex Flow on Delta-Wing at High Angles of Attack,” International Conference on Methods of Aerophysical Research, 2008
[54] P. F. Zhang, J. J. Wang, L. H. Feng, and G. B. Wang, “Experimental Study of Plasma Flow Control on Highly Swept Delta Wing,” AIAA Journal, Vol. 48, No. 1, January 2010