簡易檢索 / 詳目顯示

研究生: 朱柏彥
Chu, Po-Yen
論文名稱: 骨材級配對排水瀝青混凝土成效之影響
Effect of Aggregate Category on Drainage Asphalt
指導教授: 蕭志銘
Shiau, Jr-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 89
中文關鍵詞: 排水瀝青混凝土骨材級配
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地處亞熱帶,高溫濕熱且多雨,水分若不迅速排除而積貯在鋪面表面,會侵害瀝青混凝土,造成混凝土黏結性喪失,導致剝脫行為發生,進而引起結構破壞,影響鋪面的使用年限。排水性瀝青混凝土採用大量的粗骨材,擁有15%~25%的高孔隙率,因此能將水分迅速排除,因此擁有雨天抗滑、增加行車安全、降低水花飛濺等優點,常為多雨地區的主要選擇。歐美各國已行之有年,使用效果卓著,然台灣尚處研究階段,如何發展一套適合本身的排水性瀝青混凝土是刻不容緩之大事。
    本研究採用改質Ⅲ型瀝青,配合ASTM、日本、高公局、瑞典等四種排水級配作為試驗材料,以日本排水性鋪裝技術指針規定之配比試驗,決定各種級配之最佳瀝青含量並製作試體。利用透水試驗、浸水剝脫試驗、加壓浸水剝脫試驗、間接張力試驗、穩定值試驗、車轍輪跡試驗來測試,探討各種級配的力學性質。
    根據試驗結果顯示,瀝青混凝土之粗、細骨材比例會影響工程性質之表現,粗骨材偏高,若無足夠之中、細骨材填充,則會導致瀝青混凝土內部摩擦力不夠,致使穩定值下降、抗車轍能力較差;骨材偏細,則會影響其排水功能。此外,瀝青混凝土之滲透性及孔隙率越高,如瑞典級配,由於水分較易侵入瀝青混凝土內部,影響抗剝脫性較為嚴重,此現象可由增加瀝青薄膜厚度或瀝青添加纖維改善。
    綜觀試驗結果,可以發現瑞典級配的整體表現最好,原因為粗、細骨材比例適中,有足夠的中、細骨才填充孔隙,使得瀝青混凝土之凝聚力提升,但不會影響排水功能,透水能力最佳;瀝青薄膜厚度足以抵抗水侵害,使得間接張力損失值降低;各篩號之粒料都有,使得瀝青混凝土內部排列成最佳型態,抗車轍能力也最高。
    就瀝青黏結料而言,添加纖維雖然可以使抗拉力量上升,但是卻也使瀝青變得具有脆性,進而使得韌性值下降。但若採用瀝青先拌和纖維,再與骨材拌和製作成之試體,則其穩定值會相對提昇,也就是使得瀝青混凝土內部凝聚力變大,抗車轍能力更加;然對間接張力似乎無甚大影響,這可能是因為兩者之破壞機制不同所致。

    Taiwan is under sub-tropic zone with high temperature and humid climate. When the asphalt concrete pavement accumulates water will cause the loss of adhesion and cohesion that will produce stripping to affect the durability of asphalt concrete pavement. This will lead to destroy of the structure and decrease the service life of the pavement. Drainage asphalt use large quantity of coarse aggregate, it also has the high percentage air voids from 15% to 25% to displace the water. It is usually the primary choice of the moist region because several advantages like reducing a mist when driving and noises, preventing to hydroplaning in rainy day, increasing driving safety, etc. Although it was used several years in the Europe and the USA with good effects, it is still in research stage in Taiwan. How to develop a suitable drainage asphalt system for ourselves is an important issue. In this study, we use the polymer-modified asphalt and then combine with the Drainage Graded of the USA, Japan, Spanish, and Sweden as experimental materials. First, we use the mix design of The Japan「排水性鋪裝技術指針(案)」to decide the best percentage of asphalt content and then make the mixtures. The mixtures will be evaluated mechanical property by several tests such as Indirect Tension Test、Marshall Stabilometer Test、Wheel-Tracking Test to study the mechanical properties. We expect to find a new category which can use less asphalt content but have higher quality and produce less rutting.

    摘要 Ⅲ 誌謝 Ⅴ 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1前言 1 1.2研究動機 1 1.3研究目的 1 1.4研究範圍 2 二、文獻回顧 3 2.1 排水性瀝青混擬土 3 2.1.1排水性路面之發展狀況 3 2.1.2排水性路面組成材料 5 2.2 水侵害產生之機制 11 2.2.1水侵害發生之機理行為 11 2.2.2 黏結理論(Theories of Adhesion) 16 2.3 瀝青材料之老化行為 19 2.3.1 瀝青混凝土老化機理 19 2.3.2 老化現象與水感性之關係 20 2.4 配合設計 21 2.5 車轍的原因及類型 23 2.5.1 評估抗變形能力的指標 24 2.5.2試驗室評估瀝青混凝土抵抗永久變形之方法 25 三、試驗材料及研究方法 28 3.1研究流程 28 3.2 試驗材料 30 3.2.1 骨材與級配 30 3.2.2 黏結料 30 3.2.3 填充料 30 3.2.4 纖維 30 3.3 粒料基本物性實驗 32 3.3.1 比重試驗 32 3.3.2 洛杉磯磨損試驗 32 3.3.3 健性試驗 32 3.4 瀝青膠泥基本物性實驗 33 3.4.1 針入度試驗 33 3.4.2 延展性試驗 33 3.4.3 黏滯度試驗 33 3.4.4 軟化點試驗 33 3.4.5 韌性試驗 34 3.5 瀝青混凝土成效試驗 35 3.5.1 孔隙率試驗 35 3.5.2 透水試驗 36 3.5.3 間接張力試驗 39 3.5.4 Cantabro磨耗試驗 39 3.5.5 穩定值、流度值試驗 40 3.5.6 加壓浸水剝脫試驗 41 3.5.7 車轍輪跡試驗 42 3.6 排水性瀝青混凝土配合設計 45 3.6.1 確認目標孔隙率 45 3.6.2 瀝青混合料垂流試驗(燒杯法) 46 3.6.3 瀝青混凝土試體製作 47 第四章 試驗結果與分析 49 4.1基本物性試驗與配合設計 49 4.1.1 瀝青黏結料物性試驗 49 4.1.2 骨材粒料物性試驗 51 4.1.3 排水性瀝青混凝土配合設計結果 51 4.2 孔隙率試驗 57 4.3 透水試驗 60 4.4 磨耗試驗 63 4.5 穩定值、流度值試驗 64 4.6 車轍輪跡試驗 67 4.7 浸泡天數對間接張力之影響 72 4.8 加壓浸水剝脫試驗 75 4.9 拌和方式對瀝青混凝土之影響 77 4.9.1 韌性與黏性試驗結果分析 78 4.9.2 瀝青混凝土試驗結果分析 80 第五章 結論與建議 83 5.1 結論 83 5.2 建議 85 參考文獻 86 表目錄 表2-1 各國排水性瀝青混凝土特性之準則 4 表2-2 各國對排水性瀝青混凝土粒料性質之品質要求 6 表2-3 各國排水性瀝青混凝土之級配建議 6 表2-4 台灣CNS 14184 K5150改質瀝青規範 8 表2-5 礦物填充料成分性質分析表 9 表3-1 各國級配規範 31 表3-2 各國級配採用值 31 表3-3 試驗水溫T℃與15℃水溫之μT/μ15℃之滲透性係數修正值 38 表3-4 試驗水溫T℃與20℃水溫之μT/μ20℃之滲透性係數修正值 38 表4-1 瀝青物性試驗結果 50 表4-2 粒料基本物性試驗結果 51 表4-3 各國採用級配表 53 表4-4 排水性混合料之目標值 54 表4-5 各級配之最佳瀝青含量 56 表4-6 各級配之孔隙率 57 表4-7 級配種類對於全孔隙率之變異數分析 59 表4-8 級配種類對於連續孔隙率之變異數分析 59 表4-9 透水試驗結果 60 表4-10 級配種類對透水係數之變異數分析 61 表4-11 透水係數對連續孔隙率之變異數分析 62 表4-12 各國級配對磨耗率之變異數分析 63 表4-13 各國級配之試驗結果 65 表4-14 各國級配對穩定值之變異數分析 65 表4-15 各國級配對流度值之變異數分析 65 表4-16 粗、細骨材比例對流度值之變異數分析 66 表4-17 各國級配於60℃時之車轍深度(mm) 68 表4-18 各國級配之車轍變形率(mm/min) 69 表4-19 各國級配之動態穩定值(次/mm) 70 表4-20 各國級配之勁度值(kg/mm)與車轍總變形量 71 表4-21 試體浸泡不同天數之間接張力值 73 表4-22 試體浸泡不同天數後之強度損失率 74 表4-23 各級配粒料表層瀝青之厚度 74 表4-24 各級配經加壓剝脫試驗後間接張力試驗結果 76 表4-25 不同拌和方式之韌性試驗結果 78 表4-26 不同瀝青膠製作試體之間接張力試驗結果 80 表4-27 不同瀝青膠製作試體之穩定值試驗結果 81 圖目錄 圖2-1 各種不同瀝青和玻璃板相交情形(林志棟 1985) 13 圖2-2 防剝劑原理 13 圖2-3 孔隙水壓之機理【12】 15 圖2-4 最大含油量示意圖 22 圖2-5 車轍發生的形式【35】 23 圖2-6 動態潛變試驗應力與應變之情形 27 圖3-1 研究流程 29 圖3-2 普羅克達透水試驗儀 42 圖3-3 通過2.36mm篩重量百分率與孔隙率的關係 45 圖3-4 燒杯法垂流量試驗決定瀝青含量 47 圖4-1 改質Ⅲ型瀝青黏滯度與溫度關係曲線 50 圖4-2 日本排水性瀝青混凝土配合設計流程圖 52 圖4-3 ASTM級配垂流量與瀝青含量關係曲線 54 圖4-4 瑞典級配垂流量與瀝青含量關係曲線 55 圖4-5 高公局2.7級配垂流量與瀝青含量關係曲線 55 圖4-6 高公局4.1級配垂流量與瀝青含量關係曲線 56 圖4-7 日本級配垂流量與瀝青含量關係曲線 56 圖4-8 連續孔隙示意圖 57 圖4-9 各國級配全孔隙率與連續孔隙率 58 圖4-10 透水係數與連續孔隙關係圖 62 圖4-11 級配與磨耗率圖 63 圖4-12 各國級配之粗、細骨材比例關係圖 66 圖4-13 60℃之車轍輪跡試驗結果 67 圖4-14 勁度與車轍深度關係圖 71 圖4-15 試體浸泡不同天數後之間接張力試驗結果 73 圖4-16 試體浸泡不同天數後之間接張力損失率 74 圖4-17 試體經過加壓浸水剝脫後之間接張力試驗結果 76 圖4-18 韌性試驗拉伸示意圖 78 圖4-19 韌性試驗拉伸曲線 79 圖4-20 不同瀝青膠製作試體之間接張力試驗結果 81 圖4-21 間接張力試驗 82 圖4-22 穩定值試驗 82

    1、日本改質瀝青協會, 「熱塑性改質瀝青指針」, (1997).
    2、中華鋪面工程學會,「排水性瀝青混凝土鋪面特輯」,(2002).
    3、帆力浩三、丸山暉彥、大山秀雄、小山清,「排水性鋪裝的孔隙構造」,日本土木學會論文
    集, No.484/V-22, pp.69-76, (1994).
    4、Ruiz, A. R., Alberola, Perez, F. and Scazziga, B. (1990),” Porous Asphalt in
    Spain,” Transportation Research Record 1265, pp.87-94.
    5、日本道路協會,「排水性鋪裝技術指針」, (1996).
    6、林志棟、吳明宇,「改良型開放級配瀝青混凝土成效特性之研究」,國立中央大學土木工程
    研究所,(1999).
    7、蔡攀鰲,「排水性鋪面設計及施工」,土木水利,第27卷,第1期, pp.33-37, (2000).
    8、莊麗芳,「開放級配瀝青混凝土排水及透水預測模式之研究」,國立成功大學土木研究所碩
    士論文,台南, (1995).
    9、Isenring, T. H., Koster, and Scazziga, I.,” Experiences with Porous Asphalt
    in Switzerland,” Transportation Research Record 1265, pp.41-53, (1990).
    10、林志棟,瀝青混凝土配合設計及其原理,科技出版社 (1985).
    11、黃博仁,「排水性瀝青混合料鋪面試驗路段之成效評估」,國立中央大學土木研究所碩士
    論文,中壢, (2001).
    12、余政儒,「瀝青混凝土添加石灰耐久性之研究」,國立中央大學土木研究所碩士論文,中
    壢, (1994).
    13、楊翔詠,「水侵害對不同級配種類瀝青混凝土的影響」,國立成功大學土木研究所碩士論
    文,台南, (2000).
    14、Roberts, F.L.,P.Kandhal, E.Brown, D.Lee and T.Kennedy, Hot Mix Asphalt
    Materials Mixture Design, And Construction, First Edition, Napa Education
    Foundation, Lanham, Maryland , pp215-250(1991).
    15、Von Quintus, H.L., J. A. Scherocman, C. S. Hughes and T.W. Kennedy,”
    Asphalt-Aggregate Mixture Analysis System: AAMAS,"NCHRP Report 338.
    16、Lottman, R. P.,”Laboratory Test System for Prediction of Asphalt Concrete
    Moisture Damage,” Transportation Research Record 515, pp.18-26(1974).
    17、Nunm, M. E.,"Prediction of permanent deformation in bituminous pavement
    layers",TRRL,research report 26.
    18、Thrower, E. N.,"Methods for predicting permanent deformation in flexible
    pavements",TRRL contractor report 38.
    19、Huber, G.A., G. H. Heiman, "Effect of Asphalt Concrete Parameters on Rutting
    Performance:A Field Investigation", AAPT Vol. 56, pp.33~61, 1987.
    20、Ford, M. C., "Development of a Rational Mix Design Method for Asphalt Base &
    Characteristic of Arkansas Asphalt Mixture”, Report FHWA/AR-85/004, 1985.
    21、DUKATZ ERVIN L. JR. "AGGREGATE PROPERTIES RELATED TO PAVEMENT PERFORMANCE ",
    AAPT Vol. 58, pp.492~501, 1989.
    22、陳偉全、陳聰達,「多孔隙排水面層之設計與施工技術考察報告」, 交通部國道高速公路
    局, (1998).
    23、Jorge B.Sousa and Shmuel L. Weissman, “Modeling permanent deformation of
    asphalt-aggregate mixes, “AAPT .vol63, pp224-257(1994).
    24、Mallick. R. B., Ahlrich. R. and Brown. E. R., “Potential of Dynamic Creep to
    Predict Rutting,” Engineering Properties of Asphalt Mixtures and the
    Relationship to their Performance. ASTM STP 1265, Gerald A. Huber and Dale S.
    Decker, Eds., American Society for Testing and Materials, Philadelphia, 1995.
    25、Kandhal, P.S., Khatri, M.A., and Motter, J.B., “Evaluation of Particle Shape
    and Texture of Mineral Aggregates and their Blends, ”Journal of Association
    of Asphalt Paving Technologists, Vol. 61, pp.217-240, (1992).
    26、Tan, S. A., Fwa, T. F. and Chuai, C. T., “Study of Drainage Properties of
    Porous Asphalt Mixes,”Proceedings of 9th Road Engineering Association of
    Asia and Australasia Conference, Vol.1, pp.427-433(1998).
    27、Yoshikuni, O. and Takshi, T., “Present status Asphalt on Expressway in
    Japan,” Proceedings of 8th Road Engineering Association of Asia and
    Australasia Conference, Vol.1, pp.301-306(1995).
    28、David A. Anderson, Donald W. Christensen and Hussein Bhatia, “Physical
    Properties of Asphalt Cement and The Development of Performance-Related
    Specifications”, AAPT, Vol.60, 1991, pp.437-532.
    29、Prithvi S.kandhal,Rajib B.Mallick ,”Design of New-Generation Open-Graded
    Friction Courses”NCAT Report No.99-3,(1999).
    30、劉明仁、高金盛,「高速公路多孔隙排水面層試鋪及績效評估研究」, 交通部國道高速公
    路局, (1999).
    31、Shell Bitumen U. K., the Shell Bitumen Handbook, Surrey, U. K, (1990).
    32、Maurile, V. and Bernard, B. (1996) 〝Gap-Graded Cold Asphalt Concrete:
    Benefit of Polymer-Modified Asphalt Cement and Fibers, 〞Journal of
    Transportation Research Record 1530, pp.9-13.
    33、Asphalt Institute,” Mix Design Methods for Asphalt Concrete", MS2 1984.
    34、Monismith, C.L.,and Tayebali, A.A.,“Permanent deformation considerations in
    asphalt concrete pavement sections,”AAPT,Vol.57,pp.414-446,(1988).
    35、林志棟,林登峰,鄭根福,"瀝青混凝土路面車轍評估及防制對策",瀝青混凝土路面及
    材料特性研討會專輯,1994.
    36、Nienelt, G., and Thamfald, H., “Evaluation of the resistance to deformation
    of different road structures and asphalt mixtures determined the pavement
    rutting tester,”AAPT, Vol.57, pp.320-328, (1988).
    37、Yoon, H. H. and Tarrer, A. R.,”Effect of Aggregate Properties on
    Stripping,” Transportation Research Record 1171, pp.37-43(1988).
    38、劉守益、陳世晃、王睿懋、林志棟,「多孔性瀝青混凝土成效之評估」,中華道路,第39
    卷,第3期, pp.13-22, (2000).
    39、林樹豪,「瀝青混凝土永久變形之評估與預測」,國立成功大學土木研究所博士論文,台
    南, (1999).
    40、許志淇,「粗粒料骨材性質對瀝青混凝土抗變形能力之研究」,國立成功大學土木研究所
    碩士論文,台南, (2001).
    41、林祐徵, 「細粒料多角性與限制區對瀝青混凝土抗變形之影響」,國立成功大學土木研究
    所碩士論文,台南, (2000).
    42、郭柏宏,「瀝青膠漿質流性質對車轍行為之影響」,國立成功大學土木研究所碩士論文,台
    南, (2000).
    43、蔡攀鰲,「瀝青混凝土」三民書局,台北,(1985).
    44、方楷逸, 「改質瀝青應用於排水級配之抗水侵害研究」,國立成功大學土木研究所碩士論
    文,台南, (2002).
    45、李金鴻, 「粗骨材性質與夯壓溫度對排水性瀝青混凝土性質之研究」,國立成功大學土木
    研究所碩士論文,台南, (2002).

    下載圖示 校內:立即公開
    校外:2003-07-10公開
    QR CODE