| 研究生: |
黃柏堯 Huang, Po-Yao |
|---|---|
| 論文名稱: |
非飽和土壤邊坡滑動監測安裝研究 The Installation of Landslide Monitoring of Unsaturated Soil Slope |
| 指導教授: |
倪勝火
Ni, Sheng-Huoo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 非飽和土壤 、基質吸力 、土壤水分特性曲線 、滲流分析 |
| 外文關鍵詞: | unsaturated soils, matric suction, soil water characteristic curve, seepage analysis |
| 相關次數: | 點閱:200 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究嘗試藉由現場監測土壤在暴雨下水分變化情形探討邊坡滑移之行為,針對台20線道路邊坡進行土壤表層體積含水量、基質吸力以及邊坡相對位移監測,繪製土壤水分特性曲線,以了解其相互之間關係,並利用有限元素分析軟體ABAQUS,進行滲流分析。
本研究於台20線選定兩處場址,於此二場址埋設土壤水分探測計、土壤吸力計、雨量觀測計、邊坡相對位移計與資料擷取器,於固定時間前往監測場址收集監測資料,並依此進行初步分析研究。
研究監測結果與數值軟體分析結果顯示,邊坡表層土壤的基質吸力在降雨之後明顯下降,並在降雨停止後逐漸回升,且邊坡表層在基質吸力下降階段發生滑移現象,與非飽和土壤理論相符。依此可推斷本研究所建立之監測系統可真實的監測邊坡位移與基質吸力之間的關係
In this study, vertical array sensors are used to monitor the change of the soil moisture to investigate the behavior of sliding of soil slope. The matric suction, volumetric water content and the relative displacement of the slope of Tai-20 are monitored to understand their mutual relations. The finite element analysis program, ABAQUS, is used for seepage analysis.
In this study, two sites had been chosen at Tai-20 roadway. The soil moisture sensor, soil tensiometer, rain gauge, the slope relative displacement meter and the datalogger were set in these sites. The monitoring data was collected to analyze and study for a period of time.
Monitoring and numerical analysis results show that the matric suction of slope decreased significantly after rainfall, and gradually recovered after the cessation of rainfall. Sliding of the slope surface occurs when matric suction is decreasing, which is consistent with the theory of unsaturated soil mechanics. According to this study, the system is able to monitor the relation of matric suction and displacement accurately.
1. 王貴彥,「TDR法、中子法、重量法測定土壤含水量的比較研究」,河北農業大學學報,第23卷第3期,第23-26頁(2000)。
2. 林鴻彰,「不飽和土壤邊坡基質吸力與位移之監測及邊坡穩定分析」,碩士論文,國立台灣科技大學營建工程系 (2008)。
3. 陳志謀、陳廷堅、葉一隆,「土壤水分張力自動量測系統率定與應用」,農業工程學報,第53卷第2期,第42-49頁(2007)。
4. 陳漢平,「降雨入滲引致邊坡破壞機制之探討-以土石流源頭為對象」,碩士論文,國立台灣大學土木工程研究所(2003)。
5. 陳奕豪,「侯硐地區土石流材料-在不飽和狀態下剪力強度研究」,碩士論文,國立台灣大學土木工程研究所(2004)。
6. 陳信宏,「以Arya and Paris Model推估土壤水分特性之研究」,碩士論文,國立中興大學水土保持學系(2006)。
7. 高嘉彬,「不飽和土壤邊坡基質吸力與位移之監測及滲流分析」,碩士論文,國立台灣科技大學營建工程系 (2007) 。
8. 張永義,「利用監測系統於金龍社區邊坡穩定工程之整治規畫研究」,碩士論文,朝陽科技大學營建工程系 (2006)。
9. 張文濤,「基質吸力對於邊坡穩定性之研究-以林口台地為例」,碩士論文,國立台北科技大學土木與防災研究所 (2004)。
10. 張育誠,「以基本土壤特性評估土壤水分特徵曲線」 ,碩士論文,國立台北科技大學土木與防災研究所 (2006)。
11. 蔡孟棻,「以土壤水分特性曲線評估不飽和土壤邊坡穩定性」,碩士論文,國立台灣科技大學營建工程系 (2005) 。
12. Al-Khafaf, S., and Hanks, R.J., “Evaluation of the Filter Paper Method for Estimating Soil Water Potential,” Soil Science, Vol. 117, pp. 194-199, (1974).
13. Bishop, A.W., “The Use of the Slip Circle in the Stability Analysis of Slope,” Geotechnique, Vol. V, No. 1, pp. 7-17, (1955).
14. Corey, A.T., and Kemper, W.D., “Concept of Total Potential in Water and Its Limitation,” Soil Sci., Vol. 91, No. 5, pp. 299-305, (1961).
15. Croney, J.D., and Lewis, W.A., “Calculation of the Moisture Distribution Beneath Structures,” Cov. Eng. L., Vol. 45, p. 524, (1950).
16. Escario, V., and Juca, J., “Strength and Deformation of Partly Saturated Soils,” Proc. 12th International Conference on Soil Mechanics and Foundation Engineering, Vol. 3, pp. 43-46, (1989).
17. Fredlund, D.G., and Morgenstern, N.R., “Stress State Variables for Unsaturated Soil,” Journal of Geotechnical Engineering , ASCE, GT5 , Vol. 103, pp. 447-449. (1977).
18. Fredlund, D.G., Morgenstern, N.R., and Widger, R.A., “The Shear Strength of Unsaturated Soils,” Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321, (1978).
19. Fredlund, D.G., and Morgenstern, N.R., “Stress State Variable for Variables for Unsaturated Soil,” Journal of Geotechnical Engineering Division, ASCE, GT 11, pp. 1415-1416, (1978).
20. Fredlund, D.G., and Rahardjo, H., “Soil Mechanics for Unsaturated Soils,” John Wiley & Sons, Inc., New York, (1993).
21. Fredlund, D.G., and Xing, A., “Equations for the Soil-Water Character Curve,” Canadian Geotechnical Journal, Vol. 31, pp. 521-532, (1994).
22. Fredlund, D.G., Xing, A., and Fredlund, M.D., and Barbour, S. L., “The Relationship of the Unsaturated Soil Shear Strength to the Soil-Water Characteristic Curve,” Canadian Geotechnical Journal, Vol. 32, pp. 440-448, (1995).
23. Ho, D.Y., and Fredlund, D.G., “Increase in Strength due to Suction for Two Hong Kong Soils,” Proc. of ASCE Speciality Conference on Engineering and Construction in Tropical and Residual Soils, Hawaii, pp. 263-296, (1982).
24. Leong, E.C., and Raharjo, H., “Factors Affecting the Filter Paper Method for Total and Matric Suction Measurements,” Journal Geotechnical Testing, Vol. 25, No. 3, pp. 332-333, (2002).
25. Martin, F.J., and Doyne, H.C., “Laterite and Lateritic Soils in Sierra Leone,” The Journal of Agricultural Science, Vol. 17, pp. 530-547, (1927).
26. Newill, D., “A Laboratory Investigation of Two Red Clay from Kenya,” Geotechnique, Vol. 11, No. 4, pp. 302-318, (1961).
27. Rahardjo, H., and Han, K.K., “Shear Strength of Unsaturated Soils as it Applies to Slope Stability Analysis,” Symposium on Unsaturated Soil Behavior and Applications, Nairobi, Kenya, (1995).
28. Sillers, W.S., Fredlund, D.G., and Zakerzadeh, N., “Mathematical Attributes of Some Soil-Water Characteristic Curve Models,” Geotechnical and Geological Engineering, Vol. 19, pp. 243-283, (2001).
29. Van Genuchten, M.T., “A Closed-Form Equation for Predicting Hydraulic Conductivity of Unsaturated Soils,” Journal of Soil Science Society of America, Vol. 44, pp. 892-898, (1980).
30. Vanapalli, S.K., Fredlund, D.G. and Pufahl, D.E. and Clifton, A.W., “Model for the Preiction of Shear Strengte with Respect to Soil Suction,” Canadian Geotechnical Journal, Vol. 33, pp. 379-392, (1996).