| 研究生: |
劉展榮 Liu, Chan-Jung |
|---|---|
| 論文名稱: |
巨大含鈣類腎結石病患腎臟中過度表現的氧化型低密度脂蛋白:心血管疾病和尿路結石的可能關聯性 Overexpression of oxidized low-density lipoprotein in large calcium stone formers: the possible association between cardiovascular disease and urolithiasis |
| 指導教授: |
黃鶴翔
Huang, Ho-Shiang 蔡曜聲 Tsai, Yau-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所碩士在職專班 Institute of Clinical Medicine(on the job class) |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 腎結石 、尿路結石 、氧化型低密度脂蛋白 、粥狀動脈硬化 、氧化型低密度脂蛋白特異受器 、高敏感度C反應蛋白 |
| 外文關鍵詞: | kidney stone, urolithiasis, oxidized low-density lipoprotein, atherosclerosis, lectin-like oxLDL receptor-1, high-sensitive C-reactive protein |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
泌尿道結石,又稱為尿路結石,是影響全人口約10%的重要疾病,近年來全球盛行率上升。尿路結石手術與時精進,然而結石形成的機轉始終未能有答案,許多成因都可能導致結石的行程,包括飲食習慣、基因、解剖構造等。所有結石形成的假說中最著名的是Randall plague理論,Randall plague是在腎盂內裸露在外的磷酸鈣斑塊,在含鈣結石病患腎臟內非常常見。近年來,許多研究發現在Randall plague的位置上氧化壓力和發炎反應都上升,此外,Randall plague的成分與血管鈣化的成分相同,許多研究結果更是支持血管鈣化和尿路結石形成的過程有很高的相似性。此外,很多流行病研究都指出腎結石病患較容易有頸動脈粥狀動脈硬化、冠狀動脈疾病和中風; 血管鈣化和粥狀動脈硬化都有很高的致病率和致死率,然而腎結石和粥狀動脈硬化的關聯性仍舊未知。近年來,氧化型低密度脂蛋白已成為粥狀動脈硬化的最重要角色,許多研究也指出代謝症候群、糖尿病、慢性腎臟病的病患都會有較高的氧化型低密度脂蛋白,而這些疾病也都與腎結石形成相關,因此我們推論氧化型低密度脂蛋白可能是串連腎結石和粥狀動脈硬化的關鍵,本研究的研究目的就是探討巨大含鈣類腎結石病患的血液和尿液中是否有較高濃度的氧化型低密度脂蛋白。
與無尿路結石的對照組相比,結石組有較高的十年心血管風險分數,不過沒有統計上的差異,結石組也有較嚴重的頸動脈粥狀動脈硬化,超過70%的結石病人有程度不一的主動脈鈣化,60%的結石病人有中度到嚴重度的主動脈鈣化。儘管在本篇研究中無法發現結石病患血液中有較高的氧化型低密度脂蛋白,但是卻發現有較高的高敏感度C反應蛋白,並且是和結石體積呈現有統計學上有意義的線性相關。最重要的是,結石組尿液中的氧化型低密度脂蛋白在統計學上有顯著的高於對照組的尿液檢體,而且含鈣成份越高的病患其尿液中的氧化型低密度脂蛋白濃度越高。從結石組的腎臟切片檢體中可以發現顯著的過度表現氧化型低密度脂蛋白,主要堆積在腎臟集尿管細胞的細胞質及間質細胞中。最後,我們用實驗性誘發腎結石的大鼠動物模式與實驗性誘發腎結石同時食用高脂肪食物的大鼠比較,發現同時有食用高脂肪食物的大鼠腎臟中有顯著的草酸鈣沉積。綜合以上,巨大含鈣類腎結石病患潛在較高的心血管疾病風險,過度堆積在腎臟的氧化型低密度脂蛋白可能暗示脂肪代謝的異常會進一步促使含鈣類結石堆積。
Urinary tract stone, also known as urolithiasis, is a major disease that affects approximately 10% population, and its prevalence has been increasing worldwide. Though the advance of urolithiasis surgical techniques are great, the mechanism of urolithiasis formation is still an unanswered mystery. Multiple factors involve in kidney stone formation, including dietary habits, genetic factors, and anatomical factors, and so forth. One of the most famous and most accepted mechanism of urolithiasis is Randall plague theory. The Randall plague is located in renal papilla with exposed calcium phosphate (CaP), and this plaque can be frequently seen in calcium stone formers. In the recent decade, many studies revealed increased oxidative stress (OS) and inflammation were associated with the Randall plague formation. Composition of Randall plague is same as those of vascular calcification. Many studies also support the similarity between the vascular calcification process and urinary stone formation. Moreover, many epidemiological researches have revealed that kidney stone is related to increased risks of carotid atherosclerosis, coronary artery disease and stroke. Both vascular calcification and atherosclerosis are related to high morbidity and mortality. However, the connection between kidney stones and cardiovascular disease is still unclear. Oxidized low-density lipoprotein (oxLDL) has become the most crucial role in atherosclerosis formation. Growing evidence shown the circulating oxLDL increases under the conditions of metabolic syndrome, dyslipidemia, diabetes and chronic kidney disease, and all these diseases are associated with developing kidney stones. Therefore, we hypothesized that oxLDL may be the connection between cardiovascular disease and kidney stone. The aim of this project was to investigate whether circulating or excretion of oxLDL increases in large calcium kidney stone formers.
Compared with stone-free controls (n = 21), large calcium stone formers (n = 29), defined as larger than 2 cm in maximal length, had insignificantly higher Framingham risk scores. Stone formers had increased carotid intima-media thickness and carotid scores compared to normal reference from previous literature. Up to 71.4% of stone formers had different degrees of abdominal aorta calcification found from CT scan study, and over 60% of all stone formers had moderate-to-severe calcification in this study. Although stone formers didn’t have significantly higher serum oxLDL, serum high-sensitive C-reactive protein (hsCRP) was significantly higher and it was positively correlated to the stone volume. Most notably, urinary oxLDL and, LOX-1 (oxLDL specific receptor) levels were significantly higher in stone formers. Urinary oxLDL was particularly higher in harder kidney stones (high CT scan HU), which calcium component is higher than those with low urinary oxLDL levels. By immunohistochemical stains of kidney biopsy, oxLDL obviously accumulated in the cytoplasm of renal collecting tube and interstitial cells in over 80% stone formers. In vivo study, hydroxyproline (HP)-treated rats, which are the animal models of kidney calcium oxalate (CaOx) stone formation, had much CaOx crystals accumulating in the kidney, but rats fed with HP and high fat diets had even more CaOx crystals accumulated in the kidney. To sum up, our results demonstrated that large calcium stone formers carry higher risks in cardiovascular disease, and higher urinary oxLDL and accumulation in renal collecting duct may indicate that lipid dysmetabolism promotes calcium stone formation.
Aggarwal, K. P., Narula, S., Kakkar, M., & Tandon, C. (2013). Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int, 2013, 292953. doi:10.1155/2013/292953
Alelign, T., & Petros, B. (2018). Kidney Stone Disease: An Update on Current Concepts. Adv Urol, 2018, 3068365. doi:10.1155/2018/3068365
Alexander, R. T., Hemmelgarn, B. R., Wiebe, N., Bello, A., Samuel, S., Klarenbach, S. W., . . . Alberta Kidney Disease, N. (2014). Kidney stones and cardiovascular events: a cohort study. Clin J Am Soc Nephrol, 9(3), 506-512. doi:10.2215/CJN.04960513
Amir, A., Matlaga, B. R., Ziemba, J. B., & Sheikh, S. (2018). Kidney stone composition in the Kingdom of Saudi Arabia. Clin Nephrol, 89(5), 345-348. doi:10.5414/CN109313
Bonithon-Kopp, C., Touboul, P. J., Berr, C., Magne, C., & Ducimetiere, P. (1996). Factors of carotid arterial enlargement in a population aged 59 to 71 years: the EVA study. Stroke, 27(4), 654-660. doi:10.1161/01.str.27.4.654
Boonla, C., Wunsuwan, R., Tungsanga, K., & Tosukhowong, P. (2007). Urinary 8-hydroxydeoxyguanosine is elevated in patients with nephrolithiasis. Urol Res, 35(4), 185-191. doi:10.1007/s00240-007-0098-0
Bosmans, J. L., Holvoet, P., Dauwe, S. E., Ysebaert, D. K., Chapelle, T., Jurgens, A., . . . Verpooten, G. A. (2001). Oxidative modification of low-density lipoproteins and the outcome of renal allografts at 1 1/2 years. Kidney Int, 59(6), 2346-2356. doi:10.1046/j.1523-1755.2001.00752.x
Choi, H., Cho, D. H., Shin, H. H., & Park, J. B. (2004). Association of high sensitivity C-reactive protein with coronary heart disease prediction, but not with carotid atherosclerosis, in patients with hypertension. Circ J, 68(4), 297-303. doi:10.1253/circj.68.297
de Freitas, A. C. P., Torres, L. C., Duarte, M., da Matta, M. C., Casarini, D. E., & Schor, N. (2019). Is oxidized low-density lipoprotein the connection between atherosclerosis, cardiovascular risk and nephrolithiasis? Urolithiasis, 47(4), 347-356. doi:10.1007/s00240-018-1082-6
Devarajan, A. (2018). Cross-talk between renal lithogenesis and atherosclerosis: an unveiled link between kidney stone formation and cardiovascular diseases. Clin Sci (Lond), 132(6), 615-626. doi:10.1042/CS20171574
Evan, A., Lingeman, J., Coe, F. L., & Worcester, E. (2006). Randall's plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int, 69(8), 1313-1318. doi:10.1038/sj.ki.5000238
Evrard, S., Delanaye, P., Kamel, S., Cristol, J. P., Cavalier, E., & calcifications, S. S. j. w. g. o. v. (2015). Vascular calcification: from pathophysiology to biomarkers. Clin Chim Acta, 438, 401-414. doi:10.1016/j.cca.2014.08.034
Florens, N., Calzada, C., Lyasko, E., Juillard, L., & Soulage, C. O. (2016). Modified Lipids and Lipoproteins in Chronic Kidney Disease: A New Class of Uremic Toxins. Toxins (Basel), 8(12). doi:10.3390/toxins8120376
Geeraert, B., De Keyzer, D., Davey, P. C., Crombe, F., Benhabiles, N., & Holvoet, P. (2007). Oxidized low-density lipoprotein-induced expression of ABCA1 in blood monocytes precedes coronary atherosclerosis and is associated with plaque complexity in hypercholesterolemic pigs. J Thromb Haemost, 5(12), 2529-2536. doi:10.1111/j.1538-7836.2007.02786.x
Gutwein, P., Abdel-Bakky, M. S., Doberstein, K., Schramme, A., Beckmann, J., Schaefer, L., . . . Pfeilschifter, J. (2009). CXCL16 and oxLDL are induced in the onset of diabetic nephropathy. J Cell Mol Med, 13(9B), 3809-3825. doi:10.1111/j.1582-4934.2009.00761.x
Hartley, A., Haskard, D., & Khamis, R. (2019). Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis - Novel insights and future directions in diagnosis and therapy<sup/>. Trends Cardiovasc Med, 29(1), 22-26. doi:10.1016/j.tcm.2018.05.010
Hirose, M., Yasui, T., Okada, A., Hamamoto, S., Shimizu, H., Itoh, Y., . . . Kohri, K. (2010). Renal tubular epithelial cell injury and oxidative stress induce calcium oxalate crystal formation in mouse kidney. Int J Urol, 17(1), 83-92. doi:10.1111/j.1442-2042.2009.02410.x
Holvoet, P., Kritchevsky, S. B., Tracy, R. P., Mertens, A., Rubin, S. M., Butler, J., . . . Harris, T. B. (2004). The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes, 53(4), 1068-1073. doi:10.2337/diabetes.53.4.1068
Hsi, R. S., Spieker, A. J., Stoller, M. L., Jacobs, D. R., Jr., Reiner, A. P., McClelland, R. L., . . . Sorensen, M. D. (2016). Coronary Artery Calcium Score and Association with Recurrent Nephrolithiasis: The Multi-Ethnic Study of Atherosclerosis. J Urol, 195(4 Pt 1), 971-976. doi:10.1016/j.juro.2015.10.001
Hsieh, N., Shih, C. H., Chen, H. Y., Wu, M. C., Chen, W. C., & Li, C. W. (2003). Effects of Tamm-Horsfall protein on the protection of MCDK cells from oxalate induced free radical injury. Urol Res, 31(1), 10-16. doi:10.1007/s00240-003-0298-1
Huang, H. S., Liao, P. C., & Liu, C. J. (2020). Calcium Kidney Stones are Associated with Increased Risk of Carotid Atherosclerosis: The Link between Urinary Stone Risks, Carotid Intima-Media Thickness, and Oxidative Stress Markers. J Clin Med, 9(3). doi:10.3390/jcm9030729
Huang, H. S., Ma, M. C., Chen, C. F., & Chen, J. (2003). Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology, 62(6), 1123-1128. doi:10.1016/s0090-4295(03)00764-7
Huang, W. Y., Chen, Y. F., Carter, S., Chang, H. C., Lan, C. F., & Huang, K. H. (2013). Epidemiology of upper urinary tract stone disease in a Taiwanese population: a nationwide, population based study. J Urol, 189(6), 2158-2163. doi:10.1016/j.juro.2012.12.105
Khan, S. R. (2013). Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol, 189(3), 803-811. doi:10.1016/j.juro.2012.05.078
Khan, S. R. (2014). Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl Androl Urol, 3(3), 256-276. doi:10.3978/j.issn.2223-4683.2014.06.04
Khan, S. R., & Glenton, P. A. (1996). Increased urinary excretion of lipids by patients with kidney stones. Br J Urol, 77(4), 506-511. doi:10.1046/j.1464-410x.1996.09324.x
Khan, S. R., Glenton, P. A., & Byer, K. J. (2006). Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-L-proline. Kidney Int, 70(5), 914-923. doi:10.1038/sj.ki.5001699
Kopprasch, S., Pietzsch, J., Kuhlisch, E., Fuecker, K., Temelkova-Kurktschiev, T., Hanefeld, M., . . . Graessler, J. (2002). In vivo evidence for increased oxidation of circulating LDL in impaired glucose tolerance. Diabetes, 51(10), 3102-3106. doi:10.2337/diabetes.51.10.3102
Kovacevic, L., Lu, H., Caruso, J. A., Govil-Dalela, T., Thomas, R., & Lakshmanan, Y. (2017). Marked increase in urinary excretion of apolipoproteins in children with nephrolithiasis associated with hypercalciuria. Pediatr Nephrol, 32(6), 1029-1033. doi:10.1007/s00467-016-3576-1
Lara-Guzman, O. J., Gil-Izquierdo, A., Medina, S., Osorio, E., Alvarez-Quintero, R., Zuluaga, N., . . . Munoz-Durango, K. (2018). Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages. Redox Biol, 15, 1-11. doi:10.1016/j.redox.2017.11.017
Lee, Y. H., Huang, W. C., Tsai, J. Y., Lu, C. M., Chen, W. C., Lee, M. H., . . . Chang, L. S. (2002). Epidemiological studies on the prevalence of upper urinary calculi in Taiwan. Urol Int, 68(3), 172-177. doi:10.1159/000048445
Lieske, J. C., Rule, A. D., Krambeck, A. E., Williams, J. C., Bergstralh, E. J., Mehta, R. A., & Moyer, T. P. (2014). Stone composition as a function of age and sex. Clin J Am Soc Nephrol, 9(12), 2141-2146. doi:10.2215/CJN.05660614
Liu, H., Li, Y., Lin, N., Dong, X., Li, W., Deng, Y., & Ma, L. (2020). Interleukin-1beta Promotes Ox-LDL Uptake by Human Glomerular Mesangial Cells via LOX-1. Int J Med Sci, 17(8), 1056-1061. doi:10.7150/ijms.43981
Liu, Y., Li, S., Zeng, Z., Wang, J., Xie, L., Li, T., . . . Zhao, J. (2014). Kidney stones and cardiovascular risk: a meta-analysis of cohort studies. Am J Kidney Dis, 64(3), 402-410. doi:10.1053/j.ajkd.2014.03.017
Lloyd-Jones, D. M., Wilson, P. W., Larson, M. G., Beiser, A., Leip, E. P., D'Agostino, R. B., & Levy, D. (2004). Framingham risk score and prediction of lifetime risk for coronary heart disease. Am J Cardiol, 94(1), 20-24. doi:10.1016/j.amjcard.2004.03.023
Ma, M. C., Chen, Y. S., & Huang, H. S. (2014). Erythrocyte oxidative stress in patients with calcium oxalate stones correlates with stone size and renal tubular damage. Urology, 83(2), 510 e519-517. doi:10.1016/j.urology.2013.09.050
Matlaga, B. R., Coe, F. L., Evan, A. P., & Lingeman, J. E. (2007). The role of Randall's plaques in the pathogenesis of calcium stones. J Urol, 177(1), 31-38. doi:10.1016/j.juro.2006.08.088
Mertens, A., & Holvoet, P. (2001). Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J, 15(12), 2073-2084. doi:10.1096/fj.01-0273rev
Mulay, S. R., Kulkarni, O. P., Rupanagudi, K. V., Migliorini, A., Darisipudi, M. N., Vilaysane, A., . . . Anders, H. J. (2013). Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J Clin Invest, 123(1), 236-246. doi:10.1172/JCI63679
Nakano, A., Kawashima, H., Miyake, Y., Zeniya, T., Yamamoto, A., Koshino, K., . . . Iida, H. (2018). (123)I-Labeled oxLDL Is Widely Distributed Throughout the Whole Body in Mice. Nucl Med Mol Imaging, 52(2), 144-153. doi:10.1007/s13139-017-0497-2
Okamoto, M., Kohjimoto, Y., Iba, A., Saji, F., Hara, I., & Shigematsu, T. (2010). Calcium oxalate crystal deposition in metabolic syndrome model rat kidneys. Int J Urol, 17(12), 996-1003. doi:10.1111/j.1442-2042.2010.02661.x
Okamura, D. M., Lopez-Guisa, J. M., Koelsch, K., Collins, S., & Eddy, A. A. (2007). Atherogenic scavenger receptor modulation in the tubulointerstitium in response to chronic renal injury. Am J Physiol Renal Physiol, 293(2), F575-585. doi:10.1152/ajprenal.00063.2007
Pennathur, S., Pasichnyk, K., Bahrami, N. M., Zeng, L., Febbraio, M., Yamaguchi, I., & Okamura, D. M. (2015). The macrophage phagocytic receptor CD36 promotes fibrogenic pathways on removal of apoptotic cells during chronic kidney injury. Am J Pathol, 185(8), 2232-2245. doi:10.1016/j.ajpath.2015.04.016
Perks, A. E., Schuler, T. D., Lee, J., Ghiculete, D., Chung, D. G., RJ, D. A. H., & Pace, K. T. (2008). Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology, 72(4), 765-769. doi:10.1016/j.urology.2008.05.046
Pirillo, A., Norata, G. D., & Catapano, A. L. (2013). LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm, 2013, 152786. doi:10.1155/2013/152786
Quinn, M. T., Parthasarathy, S., Fong, L. G., & Steinberg, D. (1987). Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A, 84(9), 2995-2998. doi:10.1073/pnas.84.9.2995
Raikou, V., Kardalinos, V., & Kyriaki, D. (2018). Oxidized Low-Density Lipoprotein Serum Concentrations and Cardiovascular Morbidity in End Stage of Renal Disease. J Cardiovasc Dev Dis, 5(3). doi:10.3390/jcdd5030035
Reiner, A. P., Kahn, A., Eisner, B. H., Pletcher, M. J., Sadetsky, N., Williams, O. D., . . . Stoller, M. L. (2011). Kidney stones and subclinical atherosclerosis in young adults: the CARDIA study. J Urol, 185(3), 920-925. doi:10.1016/j.juro.2010.10.086
Ruan, X. Z., Varghese, Z., & Moorhead, J. F. (2009). An update on the lipid nephrotoxicity hypothesis. Nat Rev Nephrol, 5(12), 713-721. doi:10.1038/nrneph.2009.184
Rule, A. D., Krambeck, A. E., & Lieske, J. C. (2011). Chronic kidney disease in kidney stone formers. Clin J Am Soc Nephrol, 6(8), 2069-2075. doi:10.2215/CJN.10651110
Sawada, N., Obama, T., Koba, S., Takaki, T., Iwamoto, S., Aiuchi, T., . . . Itabe, H. (2020). Circulating oxidized LDL, increased in patients with acute myocardial infarction, is accompanied by heavily modified HDL. J Lipid Res, 61(6), 816-829. doi:10.1194/jlr.RA119000312
Scales, C. D., Jr., Smith, A. C., Hanley, J. M., Saigal, C. S., & Urologic Diseases in America, P. (2012). Prevalence of kidney stones in the United States. Eur Urol, 62(1), 160-165. doi:10.1016/j.eururo.2012.03.052
Schulze Horn, C., Ilg, R., Sander, K., Bickel, H., Briesenick, C., Hemmer, B., . . . Sander, D. (2009). High-sensitivity C-reactive protein at different stages of atherosclerosis: results of the INVADE study. J Neurol, 256(5), 783-791. doi:10.1007/s00415-009-5017-6
Selvam, R. (2002). Calcium oxalate stone disease: role of lipid peroxidation and antioxidants. Urol Res, 30(1), 35-47. doi:10.1007/s00240-001-0228-z
Shavit, L., Girfoglio, D., Vijay, V., Goldsmith, D., Ferraro, P. M., Moochhala, S. H., & Unwin, R. (2015). Vascular calcification and bone mineral density in recurrent kidney stone formers. Clin J Am Soc Nephrol, 10(2), 278-285. doi:10.2215/CJN.06030614
Sorokin, I., Mamoulakis, C., Miyazawa, K., Rodgers, A., Talati, J., & Lotan, Y. (2017). Epidemiology of stone disease across the world. World J Urol, 35(9), 1301-1320. doi:10.1007/s00345-017-2008-6
Stancel, N., Chen, C. C., Ke, L. Y., Chu, C. S., Lu, J., Sawamura, T., & Chen, C. H. (2016). Interplay between CRP, Atherogenic LDL, and LOX-1 and Its Potential Role in the Pathogenesis of Atherosclerosis. Clin Chem, 62(2), 320-327. doi:10.1373/clinchem.2015.243923
Stewart, C. R., Stuart, L. M., Wilkinson, K., van Gils, J. M., Deng, J., Halle, A., . . . Moore, K. J. (2010). CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol, 11(2), 155-161. doi:10.1038/ni.1836
Sumi, D., Hayashi, T., Thakur, N. K., Jayachandran, M., Asai, Y., Kano, H., . . . Iguchi, A. (2001). A HMG-CoA reductase inhibitor possesses a potent anti-atherosclerotic effect other than serum lipid lowering effects--the relevance of endothelial nitric oxide synthase and superoxide anion scavenging action. Atherosclerosis, 155(2), 347-357. doi:10.1016/s0021-9150(00)00597-9
Sun, Y., Lin, C. H., Lu, C. J., Yip, P. K., & Chen, R. C. (2002). Carotid atherosclerosis, intima media thickness and risk factors--an analysis of 1781 asymptomatic subjects in Taiwan. Atherosclerosis, 164(1), 89-94. doi:10.1016/s0021-9150(02)00017-5
Sur, R. L., Masterson, J. H., Palazzi, K. L., L'Esperance, J. O., Auge, B. K., Chang, D. C., & Stoller, M. L. (2013). Impact of statins on nephrolithiasis in hyperlipidemic patients: a 10-year review of an equal access health care system. Clin Nephrol, 79(5), 351-355. doi:10.5414/CN107775
Taguchi, K., Hamamoto, S., Okada, A., Unno, R., Kamisawa, H., Naiki, T., . . . Yasui, T. (2017). Genome-Wide Gene Expression Profiling of Randall's Plaques in Calcium Oxalate Stone Formers. J Am Soc Nephrol, 28(1), 333-347. doi:10.1681/ASN.2015111271
Takasu, S., Matsumoto, S., Kanto, Y., & Iwadate, K. (2018). Utility of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) in the postmortem diagnosis of ischemic heart disease. J Forensic Leg Med, 55, 45-51. doi:10.1016/j.jflm.2018.02.006
Taylor, E. R., & Stoller, M. L. (2015). Vascular theory of the formation of Randall plaques. Urolithiasis, 43 Suppl 1, 41-45. doi:10.1007/s00240-014-0718-4
Thamilselvan, S., & Menon, M. (2005). Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int, 96(1), 117-126. doi:10.1111/j.1464-410X.2005.05579.x
Wang, A., Dai, L., Zhang, N., Lin, J., Chen, G., Zuo, Y., . . . Wang, Y. (2020). Oxidized low-density lipoprotein (LDL) and LDL cholesterol are associated with outcomes of minor stroke and TIA. Atherosclerosis, 297, 74-80. doi:10.1016/j.atherosclerosis.2020.02.003
Wang, L., Sun, S., Zhou, A., Yao, X., & Wang, Y. (2014). oxLDL-induced lipid accumulation in glomerular podocytes: role of IFN-gamma, CXCL16, and ADAM10. Cell Biochem Biophys, 70(1), 529-538. doi:10.1007/s12013-014-9952-1
Wilson, P. W. F., Polonsky, T. S., Miedema, M. D., Khera, A., Kosinski, A. S., & Kuvin, J. T. (2019). Systematic Review for the 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 139(25), e1144-e1161. doi:10.1161/CIR.0000000000000626
Xue, W., Pacik, D., Boellaard, W., Breda, A., Botoca, M., Rassweiler, J., . . . Group, C. P. S. (2012). Management of single large nonstaghorn renal stones in the CROES PCNL global study. J Urol, 187(4), 1293-1297. doi:10.1016/j.juro.2011.11.113
校內:2025-08-01公開