| 研究生: |
邱久容 Chiu, Chiu-Jung |
|---|---|
| 論文名稱: |
非晶氧化鋅系列薄膜電晶體與紫外光電晶體之應用 Application of Amorphous ZnO-Based Thin Film Transistor and UV Phototransistors |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 氧化銦鎵鋅 、氧化鋅銦錫 、五氧化二鉭 、薄膜電晶體 、光電晶體 |
| 外文關鍵詞: | IGZO, ZITO, Ta2O5, thin film transistor, phototransistor |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
首先,我們應用非晶氧化銦鎵鋅薄膜做為主動層與高介電常數五氧化二鉭做為閘極介電層來製作薄膜電晶體,在2 V的電壓操作下,可以得到場效遷移率為55.3 cm2/Vs,臨界電壓為0.38 V,次臨界電壓擺幅為0.2 V,電流開關比為3.6×105。與不同的高介電常數與傳統的閘極介電層比較,其中發現我們可以達到高場效遷移率,低臨界電壓與操作電壓。這些結果原因來自於高介電常數可以使得閘極電容值上升。在非晶鋅銦錫薄膜電晶體,我們指出含量組成比例多寡影響元件電特性,可得知基本電特性的確切原因,並最佳化鋅銦錫薄膜成分組成比例,進而改善元件特性。進一步,我們證明非晶鋅銦錫薄膜電晶體與高介電常數五氧化二鉭製作在玻璃基板上。在室溫下沉積下得到操作電壓為2 V時,場效遷移率為61.7 cm2/Vs,臨界電壓為0.36 V,次臨界擺幅為0.23 V,電流開關比為105。此外,我們展示出單斜五氧化二鉭太陽盲光檢測器的製作。我們利用高溫退火的方式將非晶五氧化二鉭轉變為結晶五氧化二鉭,而我們所製作太陽盲光檢測器其截止波長為275 nm。在10 V偏壓下與275 nm的光照下所量測到的退火溫度為900 °C時,拒斥比大約有三個數量及截止區域也指出結晶後的五氧化二鉭薄膜是好的。在雜訊等效功率與檢測度分別為1.7×10-8 W和3.87×108 cmHz0.5W-1。為製作出深紫外光高介電係數五氧化二鉭/氧化鋅系列光電晶體,首先,使用非晶氧化銦鎵鋅作為主動層,在當閘極電壓為0 V,波長為250 nm紫外光照光下,量測電流-電壓從1.5×10-9 A 上升至5.56×10-5 A,在偏壓為0 V與250 nm的光照下所量測到的光響應值為4.75 A/W,深紫外光敏感率達到3.7×104,深紫外光到可見光拒斥比為5.5×105。接著,使用非晶氧化鋅銦錫作為主動層,在當閘極電壓為0 V,波長為250 nm紫外光照光下,量測電流-電壓從2.3×10-9 A 上升至7.97×10-5 A,在偏壓為0 V與250nm的光照下所量測到的光響應值為3.9 A/W,且在偏壓為0 V與380 nm的光照下所量測到的光響應值為2.13×10-4 A/W,深紫外光敏感率達到1.6×104,深紫外光到可見光拒斥比為2.3×105。其結果顯示氧化鋅系列薄膜電晶體與高介電常數五氧化二鉭運用偵測於紫外光時,有低的功率損耗與較高的光響應和拒斥比。
此外,我們提出利用非晶氧化銦鎵鋅薄膜電晶體不同氧分壓下探討光響應的影響,當偏壓VG=0V在250nm,看到拒斥比可以達到0%,0.1%,0.2%分別是 6×104, 9.1×104,1.2×106的時候, 對應到的光響應分別是0.23,0.44, 4.75 A/W,所以從這些研究中得到,氧化銦鎵鋅薄膜電晶體的氧含量的確會影響紫外光響應的表現。
In this dissertation, amorphous oxide semiconductor ZnO-based thin film transistors (TFTs) with high k Ta2O5 gate dielectric were fabricated and analysis of deep UV phototransistor investigated.
First, we apply a-IGZO thin film as channel layer to the fabrication of TFT with Ta2O5 gate dielectric. At 2 V operation voltage, it was found that the field-effect mobility (μFE) were 55.3 cm2/Vs, threshold voltage (VT)of 0.38 V, subthreshold swing (S.S) of 0.2 V/decade and Ion/Ioff of 3.6×105 for a-IGZO TFT with Ta2O5 gate dielectric. These results could be contributed to the high k material for the increased higher gate capacitance.
On the part of a-ZITO thin film transistor, we report the effect of cation composition on the device performance of a-ZITO TFTs was investigated. Then, the exact origin of the improvement of electrical characteristics, and optimize the effects of the In, Zn, and Sn fractions in ZITO thin films, in order to improve the performance of a device. The fabrication of a-ZITO thin-film transistor with a Ta2O5 dielectric on a glass substrate was demonstrated. The room-temperature-deposited a-ZITO channel with Ta2O5 exhibitsμFE of 72.3 cm2/Vs, VT of 0.75 V, S.S of 0.45 V/decade, and Ion/Ioff ratio of 105 under low operation voltage (i.e.,2V).
Additionally, we demonstrated the fabrication of β-Ta2O5 solar-blind photodetectors. It was found that one can transformation amorphous Ta2O5 to crystalline β-Ta2O5 through high-temperature annealing. It was also found that the fabricated photodetector was solar-blind with a sharp cutoff at 275 nm. With an incident light wavelength of 275 nm and an applied bias of 10 V, it was found that the UV-to-visible rejection ratio of the annealing temperature at 900°C photodetector by about 3 orders of magnitude across the cut-off region also indicates that the quality of the Ta2O5 film was good. With 10 V applied, noise equivalent power (NEP) and detectivity (D*) obtained were 1.7×10-8 W and 3.87×108 cm Hz0.5W-1, respectively, for the PDs with annealing temperature at 900°C.
For the deep UV detection of the fabrication ZnO-based phototransistor with Ta2O5 gate dielectric. First, we utilized a-IGZO thin film as active layer. It was also found that measured current increased from 1.5×10-9 A to 5.56×10-5 A as we illuminated the sample with λ= 250 nm UV light when VG was biased at 0 V. With an incident light wavelength of 250 nm and an applied gate bias of 0 V, it was found that measured responsivity and photosensitivity of the device were 4.75 A/W and 3.7×104. Furthermore, it was found that deep UV-to-visible rejection ratio could reach 5.5×105. Second, a-ZITO thin film was used active layer. It was also found that measured current increased from 2.3×10-9 A to 7.97×10-5 A as we illuminated the sample with λ= 250 nm UV light when VG was biased at 0 V. With an incident light wavelength of 250 nm and an applied gate bias of 0 V, it was found that measured responsivity and photosensitivity of the device were 3.9 A/W and 1.6×104. Then, with an incident light wavelength of 380 nm and an applied gate bias of 0 V, it was found that measured responsivity of the device was 2.13×10-4 A/W. It was also found that we could achieve the rejection of 2.3×105 when the device was biased at 0 V. These results suggest that the ZnO-based thin film transistors have the low power consumption, high responsivity and rejection ratio when used in UV detection.
Further, the oxygen content of a-IGZO TFTs can control their electrical properties and affect responsivity of TFTs under deep-UV illumination. Under the 0 V gate bias, the measured rejection ratio in the order 0%, 0.1% and 0.2% with respective values of 6×104 ,9.1×104 and 1.2×106 when the sample was illuminated with λ= 250 nm UV light. We also measured responsivities of the devices of 0.23, 0.44 and 4.75 A/W, respectively. It indicates that the oxygen content of TFTs would affect UV-light detection ability of UV-light.
Reference in chapter 1
[1] J. C. Campbell “Phototransistors for lightwave communication,” Semiconduct Semimet., vol.22, pp.389-447, 1985.
[2] Star A, Lu Y, Bradley K andGr¨uner G, “Nanotube Optoelectronic Memory Devices,” Nano Lett., vol. 4, pp.1587-1591, 2004.
[3] S. J. Chang, C. H. Chen, P. C. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, H. Hung, S. M. Wang, B. R. Huang, “Nitride-based LEDs with p-InGaN capping layer,” IEEE Trans. Elec. Dev., vol.50, pp.2567-2570, 2003.
[4] G. Chaji1, A. Nathan, and Q. Pankhurst, “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging,” Appl. Phys. Lett., vol.93, pp. 203504, 2008.
[5] N. M. Johnson and A. Chiang, “Highly photosensitive transistors in single‐crystal silicon thin films on fused silica,” Appl. Phys. Lett., vol.45, pp.1102, 1984.
[6] Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada, “Amorphous silicon phototransistors,” Appl. Phys. Lett., vol.56 pp.650-652, 1990.
[7] C. S. Choi, H. S. Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K T. Jang , Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors,” Sensors, vol. 9, pp. 6504-6529, 2009.
[8] P. K. WEIFER, H. BORKAN, G. SADASIV, L. MERAY-HORVATH, and F. V. SHALLCROSS, “Integrated Circuits Incorporating Thin-Film Active and Passive Elements,” Proc. IEEE., vol.51, pp.851, 1964.
[9] J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, Jr., X.-H. Zhang, and B. Kippelen, “Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition,” Appl. Phys. Lett., vol.94, no.142107 , 2009.
[10] Y. J. Cho, J. H. Shin, S. M. Bobade, Y. B. Kim, D. K. Choi, “Evaluation of Y2O3 gate insulators for a-IGZO thin film transistors,” Thin Solid Films., vol.517, pp.4115-4118, 2009.
[11] J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen,“High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator,” Appl. Phys. Lett. vol.93, no.242111, 2008.
[12] H. Jeon, V. P. Verma, S. Hwang, S. Lee, C. Park, D. H. Kim, W.Choi, and M. Jeon, “Characteristics of Gallium-Doped Zinc Oxide Thin-Film Transistors Fabricated at Room Temperature Using Radio Frequency Magnetron Sputtering Method,” Jpn. J. Appl. Phys., vol. 47, pp.87-90 , 2008.
[13] Y. K. Moon, D. Y. Moon, S. Lee, S. H. Lee, and J. W. Park, C. O. Jeong, “Effects of oxygen contents in the active channel layer on electrical characteristics of ZnO-based thin film transistors,” J. Vac. Sci. Technol. B., vol.26, pp.1472-1476, 2008.
[14] C. Li, Y. Li, Y. Wu, B. S. Ong, R. O. Loutfy,“ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film,” J. Appl. Phys., vol.102, no.076101, 2007.
[15] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor”, Science, vol. 300, pp. 1269-1271, 2003.
[16] N. C. Su, S. J. Wang, and A. Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric,” IEEE Elec. Dev. Lett., vol. 30, pp.1317-1319, 2009.
[17] W. C. Shin, H. Moon, S. Yoo, Y. X. Li , B. J. Cho, “Low-voltage high-performance pentacene thin-film transistors with ultrathin PVP/high-κ HfLaO hybrid gate dielectric,” IEEE Elec. Dev. Lett., vol.30, pp.1308-1310, 2010.
[18] D. A. Mourey, D. A. Zhao, T. N. Jackson, “Selfaligned-gate ZnO TFT circuits,” IEEE Electron Dev. Lett., vol.31, pp.326-328, 2010
[19] H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, “Amorphous oxide channel TFTs,” Thin Solid Films, vol.516, pp.1516-1522, 2008.
[20] K. B. Park, J. B. Seon, G. H. Kim, M. Yang, B. Koo, H. J. Kim, M.K. Ryu, S. Y. Lee, “High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors,”IEEE Elec. Dev. Lett., vol.31, pp.311-313, 2010.
[21] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager and D. A. Keszler., ”Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer,” Appl. Phys Lett, vol.40, 2007.
[22] G. D. Wilk, R. M.Wallace and J. M. Anthony, ”High-k gate dielectrics: current status and materials properties considerations,” J. Appl. Phys. vol.89, pp.5243-7275, 2001.
[23] S. H. Kim, S. E. Kim, J. H. Park, S. H. Kim and M. S. Kim, ”A complementary method to determine the effective flow resistivity of flat ground states,” J. Korean Phys. Soc., vol.43, pp.868-874, 2003.
[24] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S.Gopalan, K. Onishi and J. C. Lee,“Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Device Lett., vol.21, pp.181-183, 2000.
[25] B. H. Lee, L. Kang, R. Nieh and J. C. Lee,“Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Appl. Phys. Lett., vol.76, pp.1926-1928, 2000.
[26] M. A. Quevedo-Lopez, M. El-Bouanani and B. E. Gnade, “Interdiffusion studies for HfSixOy and ZrSixOy on Si,” J. Appl. Phys., vol.92, pp. 3540-3550, 2002.
[27] H. Y. Yu, N. Wu, M. F. Li, Chunxiang Zhu and B. J. Cho, “Thermal stability of (HfO2)x(Al2O3)1−x on Si,” Appl. Phys. Lett., vol.81, pp.3618-3620, 2002.
[28] H. H. Zhang, C. Y. Ma, Q. Y. Zhang, “Scaling behavior and structure transition of ZrO2 films deposited by RF magnetron sputtering,” Vacuum, vol.83, pp.1311-1316, 2009.
Reference in chapter 2
[1] Hideo Hosono, “Ionic amorphous oxide semiconductors: Material design carrier transport, and device application,”J. Non-Cryst. Solids, vol.352, pp.851-858, 2006.
[2] H. Hosono, N. Ueda, H. Kawazoe, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples,”J. Non-Cryst. Solids.,vol.200, pp.165–169, 1996.
[3] M. Orita, H. Ohta, M. Hirano, S. Narushima, H. Hosono, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples, ” Phil. Mag. B., vol.81, pp.501–515, 2001.
[4] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano and Hideo Hosono, “Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors, ” Nature, vol. 432 , pp.488-492 2004.
[5] Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada, “Amorphous silicon phototranslstors,” Appl. Phys. Lett.s, vol.56, pp.650-652, 2000.
[6] K. W. Lee, K. Y. Heo, and H. J. Kim, “Photosensitivity of solution-based indium gallium zinc oxide single-walled carbon nanotubes blend thin film transistors,” Appl. Phys. Lett., vol. 94, pp. 102112-1-102112-3, 2009.
[7] C. H. Park, I. S. Jeong, J. H. Kim, S. Im, “Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure,” Appl. Phys. Lett., vol.83, pp. 2946 (3page), 2003.
[8] W. Andreoni and C. A. Pignedoli, “Ta2O5 polymorphs: Structural motifs and dielectric constant from first principles,” Appl. Phys. Lett., vol. 96, pp. 062901 (3 pages), 2010.
[9] G. S. Oehrlein, F. M. d’Heurle, and A. Reisman, “Some properties of crystallized tantalum pentoxide thin films on silicon,” J. Appl. Phys., vol. 55, pp. 3715–3725, 1984.
[10] R. J. Cava, J. J. Krajewski, W. F. Peck et al., “Dielectric properties of Ta2O5–SiO2 polycrystalline ceramics,” J. Appl. Phys., vol. 80, pp. 2346–2348, 1996.
[11] C. Bartic, H. Jansen, A. Campitelli, and S. Borghs, “Ta2O¬5 as gate dielectric material for low-voltage organic thin-film transistors,” Organic Electron., vol. 3, pp. 65-72, 2002.
[12] Kaga, T., Ohkura, M., Murai, F., Yokoyama, N. and Takeda, E., “Process and device technologies for 1 Gbit dynamic random-access memory cells,” J. Vac. Sci. Technol., 1995, B13, 2329–2334.
[13] Hasimoto, C., Oikawa, H. and Honma, N., “Leakage-current reduction in thin Ta2O5 films for high-density VLSI memories,” IEEE Trans. Elec. Dev., vol.36, pp.14-18, 1989.
[14] Choi, G. M., Tuller, H. L. and Haggerty, J. S., “Alpha-Ta2O5: an intrinsic fast oxygen ion conductor,” J. Electrochem. Soc., vol.136, pp.835-838, 1989.
[15] Hensler, D. H., Cuthbert, J. D., Martin, R. J. and Tien, P. K., “Optical propagation in sheet and pattern generated films of Ta2O5,” Appl. Opt., vol.10, pp.1037-1042, 1971,.
[16] Oehrlein, G. S., “Oxidation temperature dependence of the dc electrical conduction characteristics and dielectric strength of thin Ta2O5 films on silicon,” J. Appl. Phys., vol.59, pp.1587-1595, 1986.
[17] Atanassova, E., Novkovski, N., Paskaleva, A. and Pecovska- Gjorgjevich, M., “Oxygen annealing modification of conduction mechanism in thin rf sputtered Ta2O5 on Si,” Solid State Electron., vol.46, pp.1887-1898, 2002.
[18] Ohishi, T., Maekawa, S. and Katoh, A., “Synthesis and properties of tantalum oxide films prepared by the sol–gel method using photo irradiation,” J. Non-Cryst. Solids., vol.147, pp.493-498, 1992.
[19] Donald A. Neamen, Semiconductor physics and devices: basic principles-3rd ed., McGraw-Hill, New York, 2003
Reference in chapter 3
[1] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, no. 5623, pp. 1269–1271, 2003.
[2] Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Specific contact resistances between amorphous oxide semiconductor In–Ga–Zn–O and metallic electrodes,” Thin Solid Films, vol. 516, pp. 5899–5902, 2008.
[3] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488–492, 2004.
[4] K. Takechi, M. Nakata, K. Azuma, H. Yamaguchi, and S. Kaneko, “Application of exponential tail-state distribution model to the above-threshold characteristics of Zn-based oxide thin-film transistors,” IEEE Tran. Electron. Dev., vol. 56, pp. 2165–2168, 2009.
[5] Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, “Application of DC magnetron sputtering to deposition of InGaZnO films for thin film transistor devices,” Jpn. J. Appl. Phys., vol. 48, pp. 031301 (4 pages), 2009.
[6] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radlik, Werner Weber, “High-mobility polymer gate dielectric pentacene thin film transistors,” J. Appl. Phys., vol 92, pp.5259-5263, 2002.
[7] Kimoon Lee, Jae Hoon Kim, Seongil Im, Chang Su Kim and Hong Koo Baik, “Low-voltage-driven top-gate ZnO thin-film transistors with polymer/high-k oxide double-layer dielectric,” Appl. Phys. Lett., vol.89, no.133507, 2006.
[8] S. H. Bang, S. J. Lee, S. Y. Jeon, S. Y. Kwon, W. H. Jeong, H. G. Kim, I. Shin, H. J. Chang, H. H Park and H. Tag Jeon, “Al2O3 buffer in a ZnO thin film transistor withpoly-4-vinylphenol dielectric,” Semicond. Sci. Technol., vol.24, pp.025008, 2009.
[9] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Appl. Phys. Lett., vol. 90, pp. 212114 (3 pages), 2007.
[10] L. Zhang, J. Li, X. W. Zhang, X. Y. Jiang, and Z. L. Zhang, “High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature,” Appl. Phys. Lett., vol. 95, pp. 072112 (3 pages), 2009.
[11] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., vol. 89, no. 11, pp. 112123, 2006.
[12] J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen, “High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator,” Appl. Phys. Lett., vol. 93, no. 24, p. 242111, 2008.
[13] W. Lim, S. Kim, Y.-L. Wang, J. W. Lee, D. P. Norton, S. J. Pearton, F. Ren, and I. I. Kravchenko, “High-performance indium gallium zinc oxide transparent thin-film transistors fabricated by radio-frequency sputtering,” J. Electrochem. Soc., vol. 155, no. 6, pp. H383–H385, 2008.
Reference in chapter 4
[1] Abbas Jamshidi-Roudbari, Shahrukh Akbar Khan, and Miltiadis K. Hatalis, ”High-Frequency Half-Bit Shift Register With Amorphous-Oxide TFT,” IEEE Elec. Dev. Lett., vol.31, pp.320-322, 2010.
[2] H. Ohara, T. Sasaki, K. Noda, S. Ito, M. Sasaki, Y. Endo, S. Yoshitomi, J. Sakata, T. Serikawa, and S. Yamazaki, ”4.0-inch Active-Matrix Organic Light-Emitting Diode Display Integrated with Driver Circuits Using Amorphous In–Ga–Zn-Oxide Thin-Film Transistors with Suppressed Variation,” Jpn. J. Appl. Phys., vol.49, no.03CD02, 2010.
[3] W. C. Shin, H. Moon, S. Yoo, Y. X. Li , B.J. Cho, ” Low-Voltage High-Performance Pentacene Thin-Film Transistors With Ultrathin PVP/High-kappa HfLaO Hybrid Gate Dielectric,” IEEE Elec. Dev. Lett., vol.30, pp.1308-1310, 2010.
[4] D. A. Mourey, D. A. Zhao, T. N. Jackson, ” Self-Aligned-Gate ZnO TFT Circuits,” IEEE Elec. Dev. Lett., vol.31, pp.326-328, 2010.
[5] H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, ” Amorphous oxide channel TFTs,” Thin Solid Films., vol.516, pp.1516–1522, 2008.
[6] K. B. Park, J. B. Seon, G. H. Kim, M. Yang, B. Koo, H. J. Kim, M.K. Ryu, S. Y. Lee, ”High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors,” IEEE Elec. Dev. Lett., vol.31, pp.311-313, 2010.
[7] M. S. Grover1, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager and D. A. Keszler., ”Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer,” Appl. Phys Lett, vol.40, 2007.
[8] J. Liu, D. Bruce Buchholz, Robert P. H. Chang, A. Facchetti and Tobin J. Marks,”High-Performance Flexible Transparent Thin-Film Transistors Using a Hybrid Gate Dielectric and an Amorphous Zinc Indium Tin Oxide Channel,” Adv. Mater., vol.22, pp.2333–2337, 2010.
[9] K. J. Chen, F. Y. Hung, , S. J. Chang, S. P. Chang, Y. C. Mai, Z. S. Hu, ”A study on crystallization, optical and electrical properties of the advanced ZITO thin films using co-sputtering system,” J. Alloys and Compounds., vol.509, pp.3667–3671, 2011.
[10] K. J. Saji and M. K. Jayaraj, ” Effect of oxygen partial pressure on optical and electrical properties of co-sputtered amorphous zinc indium tin oxide thin films,” Phys. Stat. Sol. (a)., vol.205, no.7, pp.1625–1630, 2008.
[11] M. K. Ryu, S. Yang, S.H. K. Park, C.S. Hwang, and J. K. Jeong, ” Impact of Sn/Zn ratio on the gate bias and temperature-induced instability of Zn-In-Sn-O thin film transistors,” Appl. Phys. Lett., vol. 95, pp. 173508 (3 pages), 2009.
[12] K. J. Saji, M. K. Jayaraj, K. Nomura, T. Kamiya, and H. Hosono, “Optical and Carrier Transport Properties of Cosputtered Zn–In–Sn–O Films and Their Applications to TFTs,” J. Electrochemical Soc., vol.155, no.6, pp. H390-H395, 2008.
[13] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager and D. A. Keszler, “Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer ,” J. Phys. D: Appl. Phys., vol.40, pp.1335–1338, 2007.
[14] M. G. Kim, H. S. Kim, Y. G. Ha, J. He, Mercouri G. Kanatzidis, Antonio Facchetti, and Tobin J. Marks, “High-Performance Solution-Processed Amorphous Zinc-Indium-Tin Oxide Thin-Film Transistors,” J. Amer. Chem. Soc., vol.132, pp.10352-10364, 2010.
[15] B. J. Kim, H. J. Kim, T. S. Yoon, Y. S. Kim, D. H. Lee, Y. Choi, B. H. Ryu and H. H. Lee, “Solution processed IZTO thin film transistor on silicon nitride dielectric layer,” J. Indus. Engine. Chem., vol.17, pp.96-99, 2011.
[16] M. K. Ryu, S. Yang, S. H. K. Park, C. S. Hwang, and J. K. Jeong, “High performance thin film transistor with cosputtered amorphous Zn–In–Sn–O channel: Combinatorial approach,” Appl. Phys. Lett., vol. 95, pp. 072104 (3 pages), 2009.
Reference in chapter 5
[1] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair Mg Ny–GaN buffer layer,” IEEE J. Quantum Electron., vol. 44, no. 10, pp. 916–921, Oct. 2008.
[2] J. Pereiro, C. Rivera, A. Navarro, E. Munoz, R. Czernecki, S. Grzanka, and M. Leszczynski, “Optimization of InGaN–GaN MQW photodetector structures for high-responsivity performance,” IEEE J. Quantum Electron., vol. 45, no. 6, pp. 617–622, Jun. 2009.
[3] E. Atanassova, A Paskaleva, “Electrical characteristics of Ti-doped Ta2O5 stacked capacitors,” Thin Solid Films., vol. 516, pp.8684-8692, 2008.
[4] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghia, “AlGaN ultraviolet photoconductors grown on sapphire,” Appl. Phys. Lett., vol. 68, pp. 2100 (3 pages), 1996.
M. Hiratani, S. Kimura, T. Hamada, S. Iijima, and N. Nakanishi, “Hexagonal polymorph of tantalum-pentoxide with enhanced dielectric constant,” Appl. Phys. Lett., vol. 81, pp. 2433–2435, 2002.
Reference in chapter 6
[1] S. J. Chang, T. K. Ko, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai, Y. C. Lin, W. S. Chen, and C. F. Shen, “GaN-based sensors with ITO contacts,” IEEE Sensors J., vol. 6, pp. 406–411, 2006.
[2] P. C. Chang, C. L. Yu, S. J. Chang, K. H. Lee, C. H. Liu, and S. L.Wu, ”High-detectivity nitride-based MSM photodetectors on InGaN-GaN multiquantum well with the unactivated Mg-doped GaN layer,” IEEE J. Quan. Electron., vol. 43, pp. 1060–1064, 2007.
[3] M. C. Hamilton and J. Kanicki, “Organic polymer thin-film transistor photosensors,” IEEE J. Sel. Top. Quan. Electron., Vol. 10, pp. 840-848, 2004.
[4] M. C. Hamilton. S. Martin and J. Kanicki, “Thin-film organic polymer phototransistors,” IEEE Tran. Electron. Dev., vol. 51, pp. 877-885, 2004.
[5] H. S. Bae, M. H. Yoon, J. H. Kim, and Seongil Im, “Photodetecting properties of ZnO-based thin-film transistors,” Appl. Phys. Lett., vol. 83, pp. 5313-5315, 2003.
[6] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4,” Thin Solid Films., vol. 486, pp.38-41, 2005.
[7] J. W. Park, P. S. Jeong, S. H. Choi, H. Lee, B. H. Kong and H. K. Cho, “Optical and structural properties of ion-implanted InGaZnO thin films studied with spectroscopic ellipsometry and transmission electron microscopy,” Jpn. J. Appl. Phys., vol. 48, Art. 111603, 2009.
[8] T. C. Fung, C. S. Chuang, K. Nomura, H. P. D. Shieh, H. Hosono and J. Kanicki, “Photofield-effect in amorphous In-Ga-Zn-O thin-film transistors”, J. Information Display, Vol. 9, pp. 21-29, 2008.
[9] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-illuminated MSM UV photodetector with high internal gain,” Jpn. J. Appl. Phys., vol. 40, pp. L505-507, 2001.
[10] Y. Liang, G. F. Dong, Y. Hu, L. D. Wang and Y. Qiu, “Low-voltage pentacene thin-film transistors with Ta2O5 gate insulators and their reversible light-induced threshold voltage shift”, Appl. Phys. Lett., vol. 86, Art. 132101, 2005.
[11] K. Chen, M. Nielsen, E. J. Rymaszewski and T. M. Lu, “Study of electron trapping in the amorphous tantalum oxide thin films prepared by d.c. magnetron reactive sputtering,” Mater. Chem. Phys., vol. 49, pp. 42-45, 1997.
[12] W. Y. Weng, T. J. Hsueh, S. J. Chang, and S. P. Chang, “A Solar-Blind β-Ga2O3 Nanowire Photodetector,” IEEE Photo. Tech. Lett., vol. 22, pp. 709-711, 2010.
[13] Michael C. Hamilton, S. Martin, and J. Kanicki, “Thin-Film Organic Polymer Phototransistors,” IEEE Tran. Electron. Dev., vol. 51, pp. 877-885, 2004.
[14] Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada, “Amorphous silicon phototranslstors,” Appl. Phys. Lett., vol. 56, pp. 650-652, 1990.
[15] B. Mukherjee, M. Mukherjee, Y. Choi, and S. Pyo, “Organic Phototransistor with n-Type Semiconductor Channel and Polymeric Gate Dielectric,” J. Phys. Chem., vol. 113, pp. 18870-18873, 2009.
[16] B. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, “O-vacancy as the origin of negative bias illumination stress instability in amorphous In–Ga–Zn–O thin film transistors,” Appl. Phys. Lett., vol. 97, pp. 022108, 2010.
[17] S. Kim, Y. W. Jeon, Y. Kim, D. Kong, H. K. Jung, M. K. Bae, J. H. Lee, B. D. Ahn, S. Y. Park, J. H. Park, J. Park, H. I. Kwon, D. M. Kim, and D. H. Kim, “Impact of Oxygen Flow Rate on the Instability Under Positive Bias Stresses in DC-Sputtered Amorphous InGaZnO Thin-Film Transistors,” IEEE Electron. Dev. Lett., vol. 33, pp. 62-64, 2012.
校內:2022-06-01公開