| 研究生: |
林士隆 Lin, Shih-Lung |
|---|---|
| 論文名稱: |
二氧化碳雷射於材料微結構的加工技術與應用之研究 A study on the fabrication of material microstructure using CO2 laser processing and its application |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 二氧化碳雷射 、水輔助 、玻璃輔助 、雷射退火 、溶膠-凝膠 、有限元素分析 |
| 外文關鍵詞: | CO2 Laser, LALP, GACLAP, Laser Annealing, Sol-gel, Simulation Analysis |
| 相關次數: | 點閱:119 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
波長10.6 μm的二氧化碳雷射具有低成本、快速與彈性製造優勢,可應用於高分子材料、玻璃與陶瓷相關的硬脆材料加工。二氧化碳雷射系統亦廣泛被應用在微通道消融、切割、微細鑽孔加工、材料退火製程,並可使用於微機電、生物晶片、光學元件、顯示面板與牙科雷射應用。二氧化碳雷射主要憑藉著光熱效應達到材料移除效果,雷射直接加工所產生的噴濺、凸塊、微裂痕與燒焦等材料缺陷將會影響到微結構後續相關應用面。本研究提出幾項具有優勢的雷射直接加工方式,包含水輔助雷射加工用於消除微裂痕與加工區塊燒焦問題、覆蓋層保護製程用於抑制凸塊形成、提升蝕刻效率與降低特徵尺寸,以及玻璃輔助矽加工以不可加工矽基板的二氧化碳雷射達成高蝕刻效率、深鑽孔與矽基板劈裂行為。
水輔助雷射加工方法可有效降低被加工物表面溫度、熱影響區域、溫度梯度與表面熱應力,經由水的熱傳作用亦可解決破裂與燒焦問題,並利用水的高度穩定性在雷射加工期間的對流作用移除噴濺或累積的再熔融複合物。加工尺度可從空氣中的400–500 μm減少至水輔助的150–200 μm或更小尺度。結合水輔助加工與低溫接合技術可有效應用於自驅動玻璃流體晶片的製作,此晶片可應用於不同黏滯係數的驅動與生物醫學相關的血液測試。覆蓋層保護製程可降低加工尺度與提高蝕刻效率,本研究亦提出高分子保護層與金屬光罩輔助方式針對PMMA與玻璃基板進行微尺度加工。其中,金屬光罩輔助雷射加工製成可有效將加工尺度從空氣條件的234.6 μm降至金屬光罩輔助的50.9 μm。上述加工方式可有效應用於微流道製作且可有效解決直接加工所造成的流道阻塞問題,凸塊高度從直接加工的10.6 μm降低到金屬光罩輔助的0.2 μm,微流道寬度亦可從190.9 μm降低至58.2 μm大小。光罩輔助雷射製程亦可應用於導光板製程,本研究所製作的高分子導光板具有商業化模板程度的75 %出光均齊度與 2165.25 cd/m2有效出光強度。
玻璃輔助二氧化碳雷射加工技術可改變矽的光吸收行為並可針對矽基板進行有效蝕刻,新的加工技術機制將被探討於電子躍升、表面氧化與矽材料在高溫環境下的光吸收性質。溶膠凝膠法製備非晶的二氧化鈦薄膜並備配合雷射退火參數可用於控制二氧化鈦薄膜轉換至銳鈦礦(Anatase)與金紅石(Rutile)結晶相結構,此法具有潛力應用於光催化與光電子相關研究。本研究規劃的雷射退火製程可用於建立與探討微結構形成與二氧化鈦相變化之研究。ANSYS有限元素分析方法亦被使用來建立一簡單熱分析模型,用於探討表面溫度熱傳與熱應力分佈狀態在空氣與上述輔助性雷射加工過程的差異性。其中,雷射退火的熱傳模型亦被建立並有效論證二氧化鈦相變化的溫度條件與分析。
The CO2 laser of 10.6 μm in wavelength is an inexpensive, rapid and flexible one for the soft polymer and hard glass and ceramic related materials processing. It has been widely applied to the fabrication of microchannel ablation, cutting, microhole drilling, material annealing and modification in the categories of MEMS, bio-chip, optical/optoelectronic devices, displays and laser dentistry. The basic CO2 laser physics is photo-thermal mechanism for material removal therefore some defects of debris, bulges, cracks and scorches around ablated microstructure are formed during laser processing in air which degrades the device yield and quality for bonding. In this dissertation, some advanced laser processing methods have been proposed for improving the microstructure quality of fabrication including Liquid Assisted Laser Processing (LALP), cover-layer protection processing and Glass Assisted CO2 LAser Processing (GACLAP) for eliminating the cracks and scorches defects, diminishing bulges height and reducing feature size, even making the transparent-in-nature silicon material to be etched, drilled and cut.
LALP can effectively reduce the temperature, heat-affected zone, thermal gradient and stress via water for hindering the crack and scorch formation together with the laser heating induced stronger natural convection in water for carrying debris away to reduce bulge height. The feature size can be reduced from 400–500 μm via traditional processing in air to 150–200 μm even smaller via LALP. Combing LALP and low-temperature bonding techniques have been used for the fabrication of capillary-driven glass-based microfluidic chip for the application of low-to-high viscosity fluid actuating and biomedical blood coagulation testing. Cover-layer protection processing is effective in reducing feature size and enhancing etching rate during laser irradiation period, both PDMS protection processing and foil mask assisted processing have been applied to micromachining in PMMA and glass substructure. Especially the foil mask assisted machining can reduce the feature size from 234.6 μm in air to 50.9 μm with foil assisted method. It has effective in microchannel fabrication and eliminate clogging problem during laser direct process, the bulge height also has reduced from 10.6 μm in air to 0.2 μm with foil mask assisted processing and the microchannel width has reduced from 190.9 μm to 58.2 μm. It also apply to light guide plate application and the light uniformity and average luminance of microdots structure reaches 75 % and 2165.25 cd/m2, which meet the requirements of commercial light guide plate.
GACLAP can change light absorption behavior of Si and make Si be etched from the top surface toward the interface whose new mechanism is discussed in viewpoint of the variation of electronic band structure, surface oxidation and light absorption of Si at high temperature. Also, a simple CO2 laser annealing process for titanium dioxide treatment has also been developed instead of conventional expensive short wavelength laser annealing and non-selective high-temperature furnace annealing. Both crystalline rutile and anatase titanium dioxide transformation from amorphous titanium oxide can be controlled by the sol-gel composition and laser annealing parameters for material property adjustment which is potentially used for the photocatalyst and optoelectronic application. The relationship between process, microstructure and phase transformation of titanium oxide is discussed and established. A simple thermal model and ANSYS software are adopted for the analysis of thermal and stress distribution on specimen during the laser irradiation in air and above assisted processing.
1. T. Cormany, P. Enoksson and G. Stemme, “Deep wet etching of borosilicate glass using an anodically bonded silicon substrate as mask”, J. Micromech. Microeng. 8, pp. 84-87 (1998).
2. C. Iliescu, J. Miao and F.E.H. Taya, “Stress control in masking layers for deep wet micromachining of Pyrex glass”, Sensors and Actuators A 117, pp. 286-292 (2005).
3. C. K. Chung, “Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system”, J. Micromech. Microeng. 14, pp. 656 (2004).
4. M. A. Gosalvez and R. M. Nieminen, “Surface morphology during anisotropic wet chemical etching of crystalline silicon”, New J. Phys. 5, pp. 100 (2003).
5. X. Lia, T. Abe, and M. Esashi, “Deep reactive ion etching of Pyrex glass using SF6 plasma”, Sensors and Actuators A 87, pp. 139-145 (2001).
6. A. Goyal, V. Hood and S. Tadigadapa, “High speed anisotropic etching of Pyrex® for microsystems applications”, J. Non-Crystalline Solid 352, pp. 657-663 (2006).
7. A. Baram and M. naftali, “Dry etching of deep cavities in Pyrex for MEMS applications using standard lithography”, J. Micromech. Microeng. 16, pp. 2287-2291 (2006).
8. P. Gravesen, J. Branebjerg and O. S. Jensen, “Microfluidics- a Review”, J. Micromech. Microeng. 3, pp. 168-182, (1993).
9. H. Makamba, J. H. Kim, K. Lim, N. Park and J. H. Hahn, “Surface modification of poly(dimethylsiloxane) microchannels”, Electrophoresis 24, pp. 3607-3619 (2003).
10. D. T. Eddington, J. P. Puccinelli and D. J. Beebe, “Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane”, Sensors and Actuators B 114, pp. 170-172 (2006).
11. K. Efimenko, W. E. Wallace and J. Genzer, “Surface Modification of Sylgard-184 Poly(dimethyl siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment”, J. Colloid Interface Science 254, pp. 306-315 (2002).
12. H. Hillborg and U. W. Gedde, “Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges”, Polymer 39, pp. 1991-1998 (1998).
13. J. A. Vickers, M. M. Caulum, and C. S. Henry, ““Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis”, Anal. Chem. 78, pp. 7446-7452 (2006).
14. A. Daridon, V. Fascio, J. Lichtenberg, R. Wütrich, H. Langen, E. Verpoorte and N. F. de Rooij, “Multi-layer microfluidic glass chips for microanalytical applications“, Fresenius J. Anal. Chem. 371, pp. 261-269 (2001).
15. R. Prakash, KVIS Kaler, “An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination”, Microfluidics Nanofluidics 3, pp. 177-187 (2007).
16. A. Kaldos, H. J. Pieper, E. Wolf and M. Krause, “Laser machining in die making a modern rapid tooling process”, Journal of Materials Processing Technology 155–156, pp. 1815 (2004).
17. William M. Steen, “Handbook of Laser Material Processing”, Springer, New York, p. 63 (1991).
18. Y. Xia, Q. Wang, L. Mei, C. Tan, S. Tue, B. Xu and X. Liu, “Laser ablation of Si, Ge, ZrO2 and Cu in air”, J. Phys. D: Appl. Phys. 24, pp. 1933 (1991).
19. G. Han and P. T. Murray, “Laser-plasma interactions in 532 nm ablation of Si”, J. Appl. Phys. 88, pp. 1184 (2000).
20. J. Ren, S. S. Orlov and L. Hesselink, “Rear surface spallation on single-crystal silicon in nanosecond laser micromachining”, J. Appl. Phys. 97, 104304 (2005).
21. M. C. Gower, “Industrial applications of laser micromachining”, Opt. Express 7, pp. 56 (2000).
22. H. C. Le, R. W. Dreyfus, W. Marine, M. Sentis and I. A. Movtchan, “Laser ablation induced formation of nanoparticles and nanocrystal networks”, Appl. Surf. Sci. 96-98, pp. 164 (1996).
23. J. Ren, M. Kell and L. Hesselink, ”Laser ablation of silicon in water with nanosecond and femtosecond pulses”, Opt. Lett. 30, pp. 1740 (2005).
24. J. S. Yahng, B. H. Chon, C. H. Kim, S. C. Jeoung and H. R. Kim, ”Nonlinear enhancement of femtosecond laser ablation efficiency by hybridization with nanosecond laser”, Opt. Express 14, pp. 9544 (2006).
25. W. J. Wang, Y. F. Lu, C. W. An, M. H. Hong and T. C. Chong, “Laser microfabrication of transparent hard materials and signal di agnostics”, Appl. Surf. Sci. 186, pp. 594 (2002).
26. C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: A two-stage process”, Journal of Applied Physics 99, 093101 (2006).
27. A. Weck, T. H. R. Crawford, D. S. Wilkinson, H. K. Haugen and J. S. Preston, “Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulse”, Appl. Phys. A 90, pp. 537-543 (2008).
28. J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden and K. G. Watkins, “Single-pulse drilling study on Au, Al and Ti alloy by using a picosecond laser”, Appl. Phys. A 95, pp. 739-746 (2009).
29. K. Venkatakrishnan, N. Sudani and B. Tan, “A high repetition rate femtosecond laser for thin silicon wafer dicing”, J. Micromech. Microeng. 18, 075032 (7pp) (2008).
30. B. Tan and K. Venkatakrishnan, “Nd–YAG laser microvia drilling for interconnection application”, J. Micromech. Microeng. 17, pp. 1511-1517 (2007).
31. B. Tan, S. Panchatsharam and K. Venkatakrishnan, “High repetition rate femtosecond laser forming sub-10 μm diameter interconnection vias”, J. Phys. D: Appl. Phys. 42, 065102 (9pp) (2009).
32. A. Vogel, J. Noack, G. Huttman, G. Paltauf, “Mechanisms of femtosecond laser nano surgery of biological cells and tissues”, Appl. Phys. B 81, pp. 1015 (2005).
33. M. Ohnishi, H. Shikata, M. Sakakura, Y. Shimotsuma, K. Miura and K. Hirao, “Micro-hole Processing of Polyimide Film by Ultra-Short Laser Pulses and Its Applications”, Appl. Phys. A 98, pp. 123 (2010).
34. http://iknow.stpi.org.tw/Post/Read.aspx?PostID=3020
35. M. J. Madou, “Fundamentals of Microfabrication”, 2nd ed., CRC press, New York, p. 590 (2002).
36. K. Zimmer, A. Braun and R. Böhme, “Etching of fused silica and glass with excimer laser at 351nm”, Applied Surface Science Volumes 208-209, pp. 199-204 (2003).
37. A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses”, J. Phys. D 40, pp. 1447-1459 (2007).
38. Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass”, Biomedical Microdevies 10, pp. 403-410 (2008).
39. H. Y. Zheng, Y. C. Lam, C. Sundarraman and D. V. Tran, “Influence of substrate cooling on femtosecond laser machined hole depth and diameter”, Appl. Phys. A 89, pp. 559-563 (2007).
40. R. Petkovšek, A. Babnik, J. Diaci and J. Možina, “Optodynamic monitoring of laser micro-drilling of glass by using a laser probe”, Appl. Phys. A 93, pp. 141-145 (2008).
41. Q. Sun, A. Saliminia, F. Théberge, R. Vallée and S. L. Chin, “Microchannel fabrication in silica glass by femtosecond laser pulses with different central wavelength”, J. Micromech. Microeng. 18, 035039 (4pp) (2008).
42. R. Bohme, K. Zimmer, B. Rauschenbach, “Laser backside etching of fused silica due to carbon layer ablation”, Appl. Phys. A 82, pp. 325-328 (2006).
43. J. Y. Cheng, M. H. Yen, C. W. Wei, Y. C. Chuang and T. H. Young, “Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip”, J. Micromech. Microeng. 15, pp. 1147-1156 (2005).
44. J. Zhao, J. Sullivan and T. D. Bennett, “Wet etching study of silica glass after cw CO2 laser treatment”, Appl. Surf. Sci. 225, pp. 250–255 (2004).
45. C. K. Chung, Y. C. Lin, and G. R. Huang, “Bulge formation and improvement of the polymer in CO2 laser micromachining”, J. Micromech. Microeng. 15, pp. 1878- 1884 (2005).
46. G. Allcock, P. E. Dyer, G. Elliner, and H. V. Snelling, “Experimental observations and analysis of CO2 laser-induced microcracking of glass”, J. Appl. Phys. 78, pp. 7295-7303 (1995).
47. H. Ogura, Y. Yoshida, “Hole Drilling of Glass Substrates with a CO2 Laser”, Jpn. J. Appl. Phys. 42, pp. 2881-2886 (2003).
48. M. H. Yen, J. Y. Cheng, C. W. Wei, Y. C. Chung and T. H. Young, “Rapid cell-patterning and microfluidic chip fabrication by crack-free CO2 laser ablation on glass”, J. Micromech. Microeng. 16, pp. 1143-1153 (2006).
49. C. K. Chung, Y. C. Sung, G. R. Huang, E. J. Hsiao, W. H. Lin and S. L. Lin, “Crackless linear through-wafer etching of Pyrex glass using liquid-assisted CO2 laser processing”, Appl. Phys. A 94, pp. 927-932 (2009).
50. C. Barnes, P. Shrotriya and P. Molian, “Water-assisted laser thermal shock machining of alumina”, International Journal of Machine Tools & Manufacture 47, pp. 1864-1874 (2007).
51. C. K. Chung, H. C. Chang, T. R. Shih, S. L. Lin, E. J. Hsiao, Y. S. Chen, E. C. Chang, C. C. Chen and C. C. Lin , “Water-assisted CO2 Laser Ablated Glass and Modified Thermal Bonding for Capillary-driven Bio-fluidic application”, Biomedical Microdevies 12, pp. 107-114 (2010).
52. A. Kruusing, “Underwater and water-assisted laser processing Part 2. Etching, cutting and rarely used methods”, Optics and Lasers in Eng. 41, pp. 307-327(2004).
53. A. Kruusing, “Review Underwater and water-assisted laser processing: Part 2-Etching, cutting and rarely used methods”, Optics and Lasers in Eng. 41, pp. 329-352 (2004).
54. R. E. Mueller, J. Bird and W. W. Duley, “Laser drilling into an absorbing liquid”, J. Appl. Phys. 71, pp. 551–556 (1992).
55. G. A. Shafeev and A. V. Simakhin, “Spatially confined laser-induced damage of Si under a liquid layer”, Appl Phys A 54, pp.311–316 (1992).
56. G. A. Shafeev and A. V. Simakhin, “Laser-assisted etching-like damage of Si under a liquid layer”, Laser Phys. 4, pp. 631–634 (1994).
57. F. Mafune´, J. Kohno, Y. Takeda and T. Kondow, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant”, J. Phys. Chem. B 105, pp. 5114-5120 (2001).
58. O’Regan, and Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353, pp. 737-740 (1991).
59. A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature 238, pp. 37-38 (1972).
60. V. V. Yakovlev, G. Scarel, C. R. Aita and S. Mochizuki, “Short-range order in ultrathin film titanium dioxide studied by Raman spectroscopy”, Appl. Phy. Lett. 76, pp.1107-1109 (2000).
61. S. S. Pradhan, S. Sahoo, S. K. Pradhan, “Influence of annealing temperature on the structural, mechanical and wetting property of TiO2 films deposited by RF magnetron sputtering”, Thin Solid Films 518, pp. 6904-6908 (2010).
62. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science, pp. 293 269 (2001).
63. M. I. Litter, “Heterogeneous photocatalysis Transition metal ions in photocatalytic systems”, Appl. Catalysis B 23, pp.89-114 (1999).
64. H. D. Nam, B. H. Lee, S. J. Kim, C. H. Jung, J. H. Lee and S. Park, “Preparation of ultrafine crystalline cpowers from aqueous TiCl4 solution by precipitation”, Jpn. J. Appl. Phys. 37, pp. 4603-4608 (1998).
65. F. Cot, A. Larbot, G. Nabias and L. Cot, “Preparation and characterization of colloidal solution derived crystallized titania powder”, J. Euro. Ceramic Soc. 18, pp. 2175-2181 (1998).
66. F. Mafune´, J. Kohno, Y. Takeda and T. Kondow, “Formation and size control of sliver nanoparticles by laser ablation in aqueous solution”, J. Phys. Chem. B 104, pp. 9111-9117 (2000).
67. http://www.engineeringtoolbox.com/overall-heat-transfer-coefficient-d_434.html.
68. G. M. Hale, and M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region”, Appl. Opt. 12(3), pp. 555–563 (1973).
69. Deborah D. L. Chung, “Handbook of Materials for electronic packaging”, Butterworth-Heinemann, UK, p. 218 (1995).
70. C. K. Chung and M. Y. Wu, “A hybrid CO2 laser processing for silicon etching”, Optics Express 15, pp. 7269-7274 (2007).
71. http://chemicalland21.com/specialtychem/perchem/LAURAMIDOPROPYL%20BETAINE.htm
72. D. S. Kim, S. H. Lee, C. H. Ahn, J. Y. Lee and T. H. Kwon, “Disposable Integrated Microfluidic Biochip for Blood Typing by Plastic Microinjection Molding”, Lab Chip 6, pp. 794-802 (2006).
73. P. K. Yuen, L. J. Kricka, P. Fortina, N. J. Panaro, T. Sakazume, and P. Wilding, “Microchip module for blood sample preparation and nucleic acid amplification reactions”, Genome Research 11, pp. 405-412 (2001).
74. H. Sakai, S. Takeoka, S. I. Park, T. Kose, Y. Izumi, A. Yoshizu, H. Nishide, K. Kobayashi, and E. Tsuchida, “Surface-modification of hemoglobin vesicles with polyethyleneglycol and effects on aggregation, viscosity, and blood flow during 90%-exchange transfusion in anesthetized rats”, Bioconjugate Chem. 8, pp. 15 (1997).
75. S. Bouaidat, O. Hansen, H. Bruus, C. Berendsen, N. K. B. Madsen, P. Thomsen, A. Wolff, and J. Jonsmann, “Surface-directed capillary system; theory, experiments and applications”, Lab Chip 5, pp. 827-883 (2005).
76. T. P. Vikinge, K. M. Hansson, J. Benesch, K. Johansen, M. Ranby, T. L. Lindahl, B. Liedberg, I. Lundström and P. Tengvall, “Blood Plasma Coagulation Studied by Surface Plasmon Resonance”, J. Biomedical Optics 5, pp. 51–55 (2000).
77. V. I. Furdui, J. K. Kariuki and D. J. Harrison, “Microfabricated electrolysis pump system for isolating rare cells in blood”, Journal of Micromechanics and Microengineering 13, pp. S164–S170 (2003).
78. Z. L. Li, T. T. Lin and P. M. Moran, “Thick polymer cover layers for laser micromachining of fine holes”, Appl. Phys. A 81, pp. 753-758 (2005).
79. D. Snakenborg, H. Klank and J. P. Kutter, “Microstructure fabrication with CO2 laser system”, J. Micromech. Microeng. 14, pp. 182-189 (2004).
80. C. K. Chung, M. W. Liao and S. L. Lin, “Effect of nonionic surfactant addition on Pyrex glass ablation using water-assisted CO2 laser processing”, Appl. Phys. A 99, pp. 285-290 (2010).
81. R. F. Z. Lizarelli, M. M. Costa, E. Carvalho-Filho, F. D. Nunes and V. S. Bagnato, “Selective ablation of dental enamel and dentin using femtosecond laser pulses”, Laser Phys. Lett 5(1), pp. 63 (2008).
82. C. K. Chung*, M. Y. Wu, J. C. Wu, Y. C. Sung and G. R. Huang, IEEE Conference of Nano/Micro Engineered and Molecular Systems (Nanotechnology Council, Zhuhai, China, 2006), pp. 1445-1448 (2006).
83. S. M. Sze, “VLSI Technology, 2nd ed.”, (McGraw-Hill, New York, USA, 1988), p. 657 & Chap. 3 (1998).
84. G. Koren, “Continuous wave laser assisted chemical material removal from Mo, W, and Si at faint red hot temperatures (700-¬800 °C)”, Appl. Phys. Lett. 47, pp. 1012 (1985).
85. S. M. Sze, “Physics of semiconductor devices”, 2nd ed.”, (John Wiley & Sons, USA, 1981) Chap. 1.
86. W. Schroter, “Handbook of semiconductor technology, vol. 1”, Jackson KA and Schroter W, ed. (WILEY-VCH, Weinheim, 2000), Chap. 10.
87. W. D. Callister Jr., “Fundamentals of materials science and engineering 2nd ed.”, (John Wiley & Sons, NJ, 2005) Chap 19.
88. G. Chen, “Nanoscale energy transport and conversion”, (Oxford, NY, USA, 2005) Chap. 4.
89. S. G. Choi, T. J. Ha, B. G. Yu, S. Shin, H. H. Cho and H. H. Park, “Application of mesoporous TiO2 as a thermal isolation layer for infrared sensors”, Thin Solid Films 516, pp. 212-215 (2007).
校內:2021-10-30公開